Partially defined $\sigma $-derivations on semisimple Banach algebras
Studia Mathematica, Tome 190 (2009) no. 2, pp. 193-202 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $A$ be a semisimple Banach algebra with a linear automorphism ${\sigma}$ and let $\delta\colon I\rightarrow A$ be a ${\sigma}$-derivation, where $I$ is an ideal of $A$. Then $\Phi(\delta)(I\cap{\sigma}(I) )=0$, where $\Phi(\delta)$ is the separating space of $\delta$. As a consequence, if $I$ is an essential ideal then the ${\sigma}$-derivation $\delta$ is closable. In a prime $C^*$-algebra, we show that every $\sigma$-derivation defined on a nonzero ideal is continuous. Finally, any linear map on a prime semisimple Banach algebra with nontrivial idempotents is continuous if it satisfies the ${\sigma}$-derivation expansion formula on zero products.
DOI : 10.4064/sm190-2-7
Keywords: semisimple banach algebra linear automorphism sigma delta colon rightarrow sigma derivation where ideal nbsp phi delta cap sigma where phi delta separating space delta consequence essential ideal sigma derivation delta closable prime * algebra every sigma derivation defined nonzero ideal continuous finally linear map prime semisimple banach algebra nontrivial idempotents continuous satisfies sigma derivation expansion formula zero products

Tsiu-Kwen Lee  1   ; Cheng-Kai Liu  2

1 Department of Mathematics National Taiwan University Taipei 106, Taiwan
2 Department of Mathematics National Changhua University of Education Changhua 500, Taiwan
@article{10_4064_sm190_2_7,
     author = {Tsiu-Kwen Lee and Cheng-Kai Liu},
     title = {Partially defined $\sigma $-derivations on
 semisimple {Banach} algebras},
     journal = {Studia Mathematica},
     pages = {193--202},
     year = {2009},
     volume = {190},
     number = {2},
     doi = {10.4064/sm190-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm190-2-7/}
}
TY  - JOUR
AU  - Tsiu-Kwen Lee
AU  - Cheng-Kai Liu
TI  - Partially defined $\sigma $-derivations on
 semisimple Banach algebras
JO  - Studia Mathematica
PY  - 2009
SP  - 193
EP  - 202
VL  - 190
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm190-2-7/
DO  - 10.4064/sm190-2-7
LA  - en
ID  - 10_4064_sm190_2_7
ER  - 
%0 Journal Article
%A Tsiu-Kwen Lee
%A Cheng-Kai Liu
%T Partially defined $\sigma $-derivations on
 semisimple Banach algebras
%J Studia Mathematica
%D 2009
%P 193-202
%V 190
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm190-2-7/
%R 10.4064/sm190-2-7
%G en
%F 10_4064_sm190_2_7
Tsiu-Kwen Lee; Cheng-Kai Liu. Partially defined $\sigma $-derivations on
 semisimple Banach algebras. Studia Mathematica, Tome 190 (2009) no. 2, pp. 193-202. doi: 10.4064/sm190-2-7

Cité par Sources :