Boundedness of sublinear operators in Triebel–Lizorkin spaces via atoms
Studia Mathematica, Tome 190 (2009) no. 2, pp. 163-183 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $s\in\mathbb R$, $p\in(0, 1]$ and $q\in[p, \infty)$. It is proved that a sublinear operator $T$ uniquely extends to a bounded sublinear operator from the Triebel–Lizorkin space $\dot{F}^s_{p, q}({\mathbb R}^{n})$ to a quasi-Banach space $\mathcal B$ if and only if $$ \sup\{ \|T(a)\|_{\mathcal B}:\, a \mbox{ is an infinitely differentiable } (p, q, s)\mbox{-atom of }\dot{F}_{p,q}^{s}(\mathbb R^n) \} \infty, $$ where the $(p, q, s)$-atom of $\dot{F}_{p,q}^{s}(\mathbb R^n)$ is as defined by Han, Paluszyński and Weiss.
DOI : 10.4064/sm190-2-5
Keywords: mathbb infty proved sublinear operator nbsp uniquely extends bounded sublinear operator triebel lizorkin space dot mathbb quasi banach space mathcal only sup mathcal mbox infinitely differentiable mbox atom dot mathbb infty where atom dot mathbb defined han paluszy ski weiss

Liguang Liu  1   ; Dachun Yang  1

1 School of Mathematical Sciences Beijing Normal University Laboratory of Mathematics and Complex Systems Ministry of Education Beijing 100875 People's Republic of China
@article{10_4064_sm190_2_5,
     author = {Liguang Liu and Dachun Yang},
     title = {Boundedness of sublinear operators
in {Triebel{\textendash}Lizorkin} spaces via atoms},
     journal = {Studia Mathematica},
     pages = {163--183},
     year = {2009},
     volume = {190},
     number = {2},
     doi = {10.4064/sm190-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm190-2-5/}
}
TY  - JOUR
AU  - Liguang Liu
AU  - Dachun Yang
TI  - Boundedness of sublinear operators
in Triebel–Lizorkin spaces via atoms
JO  - Studia Mathematica
PY  - 2009
SP  - 163
EP  - 183
VL  - 190
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm190-2-5/
DO  - 10.4064/sm190-2-5
LA  - en
ID  - 10_4064_sm190_2_5
ER  - 
%0 Journal Article
%A Liguang Liu
%A Dachun Yang
%T Boundedness of sublinear operators
in Triebel–Lizorkin spaces via atoms
%J Studia Mathematica
%D 2009
%P 163-183
%V 190
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm190-2-5/
%R 10.4064/sm190-2-5
%G en
%F 10_4064_sm190_2_5
Liguang Liu; Dachun Yang. Boundedness of sublinear operators
in Triebel–Lizorkin spaces via atoms. Studia Mathematica, Tome 190 (2009) no. 2, pp. 163-183. doi: 10.4064/sm190-2-5

Cité par Sources :