Note on distortion and Bourgain $\ell _1$-index
Studia Mathematica, Tome 190 (2009) no. 2, pp. 147-161
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Relations between different notions measuring proximity to $\ell _1$ and distortability of a Banach space are studied. The main result states that a Banach space all of whose subspaces have Bourgain $\ell _1$-index greater than $\omega ^\alpha $, $\alpha \omega _1$, contains either an arbitrarily distortable subspace or an $\ell _1^\alpha $-asymptotic subspace.
Keywords:
relations between different notions measuring proximity ell distortability banach space studied main result states banach space whose subspaces have bourgain ell index greater omega alpha alpha omega contains either arbitrarily distortable subspace ell alpha asymptotic subspace
Affiliations des auteurs :
Anna Maria Pelczar  1
@article{10_4064_sm190_2_4,
author = {Anna Maria Pelczar},
title = {Note on distortion and {Bourgain} $\ell _1$-index},
journal = {Studia Mathematica},
pages = {147--161},
year = {2009},
volume = {190},
number = {2},
doi = {10.4064/sm190-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm190-2-4/}
}
Anna Maria Pelczar. Note on distortion and Bourgain $\ell _1$-index. Studia Mathematica, Tome 190 (2009) no. 2, pp. 147-161. doi: 10.4064/sm190-2-4
Cité par Sources :