A double commutant theorem for
purely large $C^*$-subalgebras of real rank zero corona algebras
Studia Mathematica, Tome 190 (2009) no. 2, pp. 135-145
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let ${\cal A}$ be a unital separable simple nuclear $C^*$-algebra such
that
${{\cal M}({\cal A} \otimes {\cal K})}$ has real rank zero.
Suppose that $\mathbb C$ is a separable simple liftable and purely large unital
$C^*$-subalgebra of ${\cal M}({\cal A} \otimes {\cal K})/ ({\cal A} \otimes {\cal K})$.
Then the relative double commutant of $\mathbb C$ in
${{\cal M}({\cal A}\otimes {\cal K})/({\cal A} \otimes {\cal K})}$ is equal to $\mathbb C$.
Keywords:
cal unital separable simple nuclear * algebra cal cal otimes cal has real rank zero suppose mathbb separable simple liftable purely large unital * subalgebra cal cal otimes cal cal otimes cal relative double commutant mathbb cal cal otimes cal cal otimes cal equal mathbb
Affiliations des auteurs :
P. W. Ng  1
@article{10_4064_sm190_2_3,
author = {P. W. Ng},
title = {A double commutant theorem for
purely large $C^*$-subalgebras of real rank zero corona algebras},
journal = {Studia Mathematica},
pages = {135--145},
year = {2009},
volume = {190},
number = {2},
doi = {10.4064/sm190-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm190-2-3/}
}
TY - JOUR AU - P. W. Ng TI - A double commutant theorem for purely large $C^*$-subalgebras of real rank zero corona algebras JO - Studia Mathematica PY - 2009 SP - 135 EP - 145 VL - 190 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm190-2-3/ DO - 10.4064/sm190-2-3 LA - en ID - 10_4064_sm190_2_3 ER -
P. W. Ng. A double commutant theorem for purely large $C^*$-subalgebras of real rank zero corona algebras. Studia Mathematica, Tome 190 (2009) no. 2, pp. 135-145. doi: 10.4064/sm190-2-3
Cité par Sources :