Asymptotic behaviour of averages of $k$-dimensional marginals of measures on $\mathbb R^n$
Studia Mathematica, Tome 190 (2009) no. 1, pp. 1-31 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We study the asymptotic behaviour, as $n\to\infty$, of the Lebesgue measure of the set $ \{x\in K: \vert P_E(x)\vert\le t\}$ for a random $k$-dimensional subspace $E\subset\mathbb R^n$ and an isotropic convex body $K\subset\mathbb R^n$. For $k$ growing slowly to infinity, we prove it to be close to the suitably normalised Gaussian measure in $\mathbb R^k$ of a $t$-dilate of the Euclidean unit ball. Some of the results hold for a wider class of probabilities on $\mathbb R^n$.
DOI : 10.4064/sm190-1-1
Keywords: study asymptotic behaviour infty lebesgue measure set vert vert random k dimensional subspace subset mathbb isotropic convex body subset mathbb growing slowly infinity prove close suitably normalised gaussian measure mathbb t dilate euclidean unit ball results wider class probabilities mathbb

Jesús Bastero  1   ; Julio Bernués  1

1 Departamento de Matemáticas Universidad de Zaragoza 50009 Zaragoza, Spain
@article{10_4064_sm190_1_1,
     author = {Jes\'us Bastero and Julio Bernu\'es},
     title = {Asymptotic behaviour of averages of $k$-dimensional marginals of
measures on $\mathbb R^n$},
     journal = {Studia Mathematica},
     pages = {1--31},
     year = {2009},
     volume = {190},
     number = {1},
     doi = {10.4064/sm190-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm190-1-1/}
}
TY  - JOUR
AU  - Jesús Bastero
AU  - Julio Bernués
TI  - Asymptotic behaviour of averages of $k$-dimensional marginals of
measures on $\mathbb R^n$
JO  - Studia Mathematica
PY  - 2009
SP  - 1
EP  - 31
VL  - 190
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm190-1-1/
DO  - 10.4064/sm190-1-1
LA  - en
ID  - 10_4064_sm190_1_1
ER  - 
%0 Journal Article
%A Jesús Bastero
%A Julio Bernués
%T Asymptotic behaviour of averages of $k$-dimensional marginals of
measures on $\mathbb R^n$
%J Studia Mathematica
%D 2009
%P 1-31
%V 190
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm190-1-1/
%R 10.4064/sm190-1-1
%G en
%F 10_4064_sm190_1_1
Jesús Bastero; Julio Bernués. Asymptotic behaviour of averages of $k$-dimensional marginals of
measures on $\mathbb R^n$. Studia Mathematica, Tome 190 (2009) no. 1, pp. 1-31. doi: 10.4064/sm190-1-1

Cité par Sources :