The uniqueness of invariant measures for Markov operators
Studia Mathematica, Tome 189 (2008) no. 3, pp. 225-233

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that Markov operators with equicontinuous dual operators which overlap supports have at most one invariant measure. In this way we extend the well known result proved for Markov operators with the strong Feller property by R. Z. Khas'minski.
DOI : 10.4064/sm189-3-2
Keywords: shown markov operators equicontinuous dual operators which overlap supports have invariant measure extend known result proved markov operators strong feller property khasminski

Tomasz Szarek 1

1 Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice, Poland
@article{10_4064_sm189_3_2,
     author = {Tomasz Szarek},
     title = {The uniqueness of invariant measures for {Markov} operators},
     journal = {Studia Mathematica},
     pages = {225--233},
     publisher = {mathdoc},
     volume = {189},
     number = {3},
     year = {2008},
     doi = {10.4064/sm189-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm189-3-2/}
}
TY  - JOUR
AU  - Tomasz Szarek
TI  - The uniqueness of invariant measures for Markov operators
JO  - Studia Mathematica
PY  - 2008
SP  - 225
EP  - 233
VL  - 189
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm189-3-2/
DO  - 10.4064/sm189-3-2
LA  - en
ID  - 10_4064_sm189_3_2
ER  - 
%0 Journal Article
%A Tomasz Szarek
%T The uniqueness of invariant measures for Markov operators
%J Studia Mathematica
%D 2008
%P 225-233
%V 189
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm189-3-2/
%R 10.4064/sm189-3-2
%G en
%F 10_4064_sm189_3_2
Tomasz Szarek. The uniqueness of invariant measures for Markov operators. Studia Mathematica, Tome 189 (2008) no. 3, pp. 225-233. doi: 10.4064/sm189-3-2

Cité par Sources :