1St. John's College Oxford OX1 3JP, Great Britain 2Laboratoire de Mathématiques et Applications de Metz – CNRS Université Paul Verlaine – Metz UMR 7122, Bât. A, Île du Saulcy 57045 Metz Cedex 1, France 3Department of Mathematics Indian Institute of Science Bangalore 560 012, India Current address: Department of Mathematics University of Delhi Delhi, India
Studia Mathematica, Tome 189 (2008) no. 3, pp. 205-223
We consider some non-autonomous second order Cauchy problems of the form
$$
\ddot u + B(t) \dot u + A(t) u = f \quad (t\in [0,T]) ,
\ \quad u(0) = \dot u (0) =0.
$$
We assume that the first order problem
$$
\dot u + B(t) u = f \quad (t\in [0,T]) , \ \quad u(0) =0,
$$
has $L^p$-maximal regularity. Then we establish $L^p$-maximal regularity of the second order problem in situations when the domains of $B(t_1)$ and $A(t_2)$ always coincide, or when $A(t) = \kappa B(t)$.
Keywords:
consider non autonomous second order cauchy problems form ddot dot quad quad dot assume first order problem dot quad quad has p maximal regularity establish p maximal regularity second order problem situations domains always coincide kappa
Affiliations des auteurs :
Charles J. K. Batty 
1
;
Ralph Chill 
2
;
Sachi Srivastava 
3
1
St. John's College Oxford OX1 3JP, Great Britain
2
Laboratoire de Mathématiques et Applications de Metz – CNRS Université Paul Verlaine – Metz UMR 7122, Bât. A, Île du Saulcy 57045 Metz Cedex 1, France
3
Department of Mathematics Indian Institute of Science Bangalore 560 012, India Current address: Department of Mathematics University of Delhi Delhi, India
@article{10_4064_sm189_3_1,
author = {Charles J. K. Batty and Ralph Chill and Sachi Srivastava},
title = {Maximal regularity for
second order non-autonomous {Cauchy} problems},
journal = {Studia Mathematica},
pages = {205--223},
year = {2008},
volume = {189},
number = {3},
doi = {10.4064/sm189-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm189-3-1/}
}
TY - JOUR
AU - Charles J. K. Batty
AU - Ralph Chill
AU - Sachi Srivastava
TI - Maximal regularity for
second order non-autonomous Cauchy problems
JO - Studia Mathematica
PY - 2008
SP - 205
EP - 223
VL - 189
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm189-3-1/
DO - 10.4064/sm189-3-1
LA - en
ID - 10_4064_sm189_3_1
ER -
%0 Journal Article
%A Charles J. K. Batty
%A Ralph Chill
%A Sachi Srivastava
%T Maximal regularity for
second order non-autonomous Cauchy problems
%J Studia Mathematica
%D 2008
%P 205-223
%V 189
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm189-3-1/
%R 10.4064/sm189-3-1
%G en
%F 10_4064_sm189_3_1
Charles J. K. Batty; Ralph Chill; Sachi Srivastava. Maximal regularity for
second order non-autonomous Cauchy problems. Studia Mathematica, Tome 189 (2008) no. 3, pp. 205-223. doi: 10.4064/sm189-3-1