Continuous rearrangements of the Haar system in $H_p$ for $0 p \infty$
Studia Mathematica, Tome 189 (2008) no. 2, pp. 189-199

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove three theorems on linear operators $T_{\tau,p} : H_p({\cal B}) \to H_p$ induced by rearrangement of a subsequence of a Haar system. We find a sufficient and necessary condition for $T_{\tau,p}$ to be continuous for $0 p \infty$.
DOI : 10.4064/sm189-2-6
Keywords: prove three theorems linear operators tau cal induced rearrangement subsequence haar system sufficient necessary condition tau continuous infty

Krzysztof Smela 1

1 Department of Mathematics and Applied Physics Rzeszów University of Technology W. Pola 2 35-959 Rzeszów, Poland
@article{10_4064_sm189_2_6,
     author = {Krzysztof Smela},
     title = {Continuous rearrangements of the {Haar} system
in $H_p$ for $0 < p < \infty$},
     journal = {Studia Mathematica},
     pages = {189--199},
     publisher = {mathdoc},
     volume = {189},
     number = {2},
     year = {2008},
     doi = {10.4064/sm189-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm189-2-6/}
}
TY  - JOUR
AU  - Krzysztof Smela
TI  - Continuous rearrangements of the Haar system
in $H_p$ for $0 < p < \infty$
JO  - Studia Mathematica
PY  - 2008
SP  - 189
EP  - 199
VL  - 189
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm189-2-6/
DO  - 10.4064/sm189-2-6
LA  - en
ID  - 10_4064_sm189_2_6
ER  - 
%0 Journal Article
%A Krzysztof Smela
%T Continuous rearrangements of the Haar system
in $H_p$ for $0 < p < \infty$
%J Studia Mathematica
%D 2008
%P 189-199
%V 189
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm189-2-6/
%R 10.4064/sm189-2-6
%G en
%F 10_4064_sm189_2_6
Krzysztof Smela. Continuous rearrangements of the Haar system
in $H_p$ for $0 < p < \infty$. Studia Mathematica, Tome 189 (2008) no. 2, pp. 189-199. doi: 10.4064/sm189-2-6

Cité par Sources :