Continuous rearrangements of the Haar system
in $H_p$ for $0 p \infty$
Studia Mathematica, Tome 189 (2008) no. 2, pp. 189-199
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove three theorems on linear operators $T_{\tau,p} : H_p({\cal B}) \to H_p$
induced by rearrangement of a subsequence of a Haar system.
We find a sufficient and necessary condition for $T_{\tau,p}$ to be continuous
for $0 p \infty$.
Keywords:
prove three theorems linear operators tau cal induced rearrangement subsequence haar system sufficient necessary condition tau continuous infty
Affiliations des auteurs :
Krzysztof Smela 1
@article{10_4064_sm189_2_6,
author = {Krzysztof Smela},
title = {Continuous rearrangements of the {Haar} system
in $H_p$ for $0 < p < \infty$},
journal = {Studia Mathematica},
pages = {189--199},
publisher = {mathdoc},
volume = {189},
number = {2},
year = {2008},
doi = {10.4064/sm189-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm189-2-6/}
}
TY - JOUR AU - Krzysztof Smela TI - Continuous rearrangements of the Haar system in $H_p$ for $0 < p < \infty$ JO - Studia Mathematica PY - 2008 SP - 189 EP - 199 VL - 189 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm189-2-6/ DO - 10.4064/sm189-2-6 LA - en ID - 10_4064_sm189_2_6 ER -
Krzysztof Smela. Continuous rearrangements of the Haar system in $H_p$ for $0 < p < \infty$. Studia Mathematica, Tome 189 (2008) no. 2, pp. 189-199. doi: 10.4064/sm189-2-6
Cité par Sources :