1Heinrich-Hertz Chair for Mobile Communications Department of EECS Technische Universität Berlin Einsteinufer 25 10587 Berlin, Germany 2Department of Electrical Engineering Technion – Israel Institute of Technology Haifa 32000, Israel
Studia Mathematica, Tome 189 (2008) no. 2, pp. 131-145
This paper characterizes the Banach algebras of continuous
functions on which the spectral factorization mapping
$\mathfrak{S}$ is continuous or bounded. It is shown that $\mathfrak{S}$ is
continuous if and only if the Riesz projection is bounded on the
algebra, and that $\mathfrak{S}$ is bounded only if the algebra is
isomorphic to the algebra of continuous functions. Consequently,
$\mathfrak{S}$ can never be both continuous and bounded, on any algebra
under consideration.
Keywords:
paper characterizes banach algebras continuous functions which spectral factorization mapping mathfrak continuous bounded shown mathfrak continuous only riesz projection bounded algebra mathfrak bounded only algebra isomorphic algebra continuous functions consequently mathfrak never continuous bounded algebra under consideration
Affiliations des auteurs :
Holger Boche 
1
;
Volker Pohl 
2
1
Heinrich-Hertz Chair for Mobile Communications Department of EECS Technische Universität Berlin Einsteinufer 25 10587 Berlin, Germany
2
Department of Electrical Engineering Technion – Israel Institute of Technology Haifa 32000, Israel
@article{10_4064_sm189_2_4,
author = {Holger Boche and Volker Pohl},
title = {Continuity
versus boundedness of the spectral factorization mapping},
journal = {Studia Mathematica},
pages = {131--145},
year = {2008},
volume = {189},
number = {2},
doi = {10.4064/sm189-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm189-2-4/}
}
TY - JOUR
AU - Holger Boche
AU - Volker Pohl
TI - Continuity
versus boundedness of the spectral factorization mapping
JO - Studia Mathematica
PY - 2008
SP - 131
EP - 145
VL - 189
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm189-2-4/
DO - 10.4064/sm189-2-4
LA - en
ID - 10_4064_sm189_2_4
ER -
%0 Journal Article
%A Holger Boche
%A Volker Pohl
%T Continuity
versus boundedness of the spectral factorization mapping
%J Studia Mathematica
%D 2008
%P 131-145
%V 189
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm189-2-4/
%R 10.4064/sm189-2-4
%G en
%F 10_4064_sm189_2_4
Holger Boche; Volker Pohl. Continuity
versus boundedness of the spectral factorization mapping. Studia Mathematica, Tome 189 (2008) no. 2, pp. 131-145. doi: 10.4064/sm189-2-4