Continuity versus boundedness of the spectral factorization mapping
Studia Mathematica, Tome 189 (2008) no. 2, pp. 131-145

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper characterizes the Banach algebras of continuous functions on which the spectral factorization mapping $\mathfrak{S}$ is continuous or bounded. It is shown that $\mathfrak{S}$ is continuous if and only if the Riesz projection is bounded on the algebra, and that $\mathfrak{S}$ is bounded only if the algebra is isomorphic to the algebra of continuous functions. Consequently, $\mathfrak{S}$ can never be both continuous and bounded, on any algebra under consideration.
DOI : 10.4064/sm189-2-4
Keywords: paper characterizes banach algebras continuous functions which spectral factorization mapping mathfrak continuous bounded shown mathfrak continuous only riesz projection bounded algebra mathfrak bounded only algebra isomorphic algebra continuous functions consequently mathfrak never continuous bounded algebra under consideration

Holger Boche 1 ; Volker Pohl 2

1 Heinrich-Hertz Chair for Mobile Communications Department of EECS Technische Universität Berlin Einsteinufer 25 10587 Berlin, Germany
2 Department of Electrical Engineering Technion – Israel Institute of Technology Haifa 32000, Israel
@article{10_4064_sm189_2_4,
     author = {Holger Boche and Volker Pohl},
     title = {Continuity
versus boundedness of the spectral factorization mapping},
     journal = {Studia Mathematica},
     pages = {131--145},
     publisher = {mathdoc},
     volume = {189},
     number = {2},
     year = {2008},
     doi = {10.4064/sm189-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm189-2-4/}
}
TY  - JOUR
AU  - Holger Boche
AU  - Volker Pohl
TI  - Continuity
versus boundedness of the spectral factorization mapping
JO  - Studia Mathematica
PY  - 2008
SP  - 131
EP  - 145
VL  - 189
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm189-2-4/
DO  - 10.4064/sm189-2-4
LA  - en
ID  - 10_4064_sm189_2_4
ER  - 
%0 Journal Article
%A Holger Boche
%A Volker Pohl
%T Continuity
versus boundedness of the spectral factorization mapping
%J Studia Mathematica
%D 2008
%P 131-145
%V 189
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm189-2-4/
%R 10.4064/sm189-2-4
%G en
%F 10_4064_sm189_2_4
Holger Boche; Volker Pohl. Continuity
versus boundedness of the spectral factorization mapping. Studia Mathematica, Tome 189 (2008) no. 2, pp. 131-145. doi: 10.4064/sm189-2-4

Cité par Sources :