A Littlewood–Paley–Stein estimate on graphs and groups
Studia Mathematica, Tome 189 (2008) no. 2, pp. 113-129

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish the boundedness in $L^q$ spaces, $1 q\leq 2$, of a “vertical" Littlewood–Paley–Stein operator associated with a reversible random walk on a graph. This result extends to certain non-reversible random walks, including centered random walks on any finitely generated discrete group.
DOI : 10.4064/sm189-2-3
Keywords: establish boundedness spaces leq vertical littlewood paley stein operator associated reversible random walk graph result extends certain non reversible random walks including centered random walks finitely generated discrete group

Nick Dungey 1

1 Department of Mathematics Macquarie University Sydney, NSW 2109, Australia
@article{10_4064_sm189_2_3,
     author = {Nick Dungey},
     title = {A {Littlewood{\textendash}Paley{\textendash}Stein} estimate on graphs and groups},
     journal = {Studia Mathematica},
     pages = {113--129},
     publisher = {mathdoc},
     volume = {189},
     number = {2},
     year = {2008},
     doi = {10.4064/sm189-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm189-2-3/}
}
TY  - JOUR
AU  - Nick Dungey
TI  - A Littlewood–Paley–Stein estimate on graphs and groups
JO  - Studia Mathematica
PY  - 2008
SP  - 113
EP  - 129
VL  - 189
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm189-2-3/
DO  - 10.4064/sm189-2-3
LA  - en
ID  - 10_4064_sm189_2_3
ER  - 
%0 Journal Article
%A Nick Dungey
%T A Littlewood–Paley–Stein estimate on graphs and groups
%J Studia Mathematica
%D 2008
%P 113-129
%V 189
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm189-2-3/
%R 10.4064/sm189-2-3
%G en
%F 10_4064_sm189_2_3
Nick Dungey. A Littlewood–Paley–Stein estimate on graphs and groups. Studia Mathematica, Tome 189 (2008) no. 2, pp. 113-129. doi: 10.4064/sm189-2-3

Cité par Sources :