Factorization and domination of
positive Banach–Saks operators
Studia Mathematica, Tome 189 (2008) no. 1, pp. 91-101
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is proved that every positive Banach–Saks operator $T:E\rightarrow F$ between Banach lattices $E$ and $F$ factors through a Banach lattice with the Banach–Saks property, provided that $F$ has order continuous norm. By means of an example we show that this order continuity condition cannot be removed. In addition, some domination results, in the Dodds–Fremlin sense, are obtained for the class of Banach–Saks operators.
Keywords:
proved every positive banach saks operator rightarrow between banach lattices factors through banach lattice banach saks property provided has order continuous norm means example order continuity condition cannot removed addition domination results dodds fremlin sense obtained class banach saks operators
Affiliations des auteurs :
Julio Flores 1 ; Pedro Tradacete 2
@article{10_4064_sm189_1_7,
author = {Julio Flores and Pedro Tradacete},
title = {Factorization and domination of
positive {Banach{\textendash}Saks} operators},
journal = {Studia Mathematica},
pages = {91--101},
publisher = {mathdoc},
volume = {189},
number = {1},
year = {2008},
doi = {10.4064/sm189-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm189-1-7/}
}
TY - JOUR AU - Julio Flores AU - Pedro Tradacete TI - Factorization and domination of positive Banach–Saks operators JO - Studia Mathematica PY - 2008 SP - 91 EP - 101 VL - 189 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm189-1-7/ DO - 10.4064/sm189-1-7 LA - en ID - 10_4064_sm189_1_7 ER -
Julio Flores; Pedro Tradacete. Factorization and domination of positive Banach–Saks operators. Studia Mathematica, Tome 189 (2008) no. 1, pp. 91-101. doi: 10.4064/sm189-1-7
Cité par Sources :