Non-separable Banach spaces with non-meager Hamel basis
Studia Mathematica, Tome 189 (2008) no. 1, pp. 27-34
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that an infinite-dimensional complete linear
space $X$ has:$\bullet$ a dense hereditarily Baire Hamel basis if $|X|\le{\mathfrak c}^+$;$\bullet$ a dense non-meager Hamel basis if $|X|=\kappa^\omega=2^\kappa$ for
some cardinal $\kappa$.
Keywords:
infinite dimensional complete linear space nbsp has bullet dense hereditarily baire hamel basis mathfrak bullet dense non meager hamel basis kappa omega kappa cardinal nbsp kappa
Affiliations des auteurs :
Taras Banakh 1 ; Mirna Džamonja 2 ; Lorenz Halbeisen 3
@article{10_4064_sm189_1_3,
author = {Taras Banakh and Mirna D\v{z}amonja and Lorenz Halbeisen},
title = {Non-separable {Banach} spaces with non-meager {Hamel} basis},
journal = {Studia Mathematica},
pages = {27--34},
publisher = {mathdoc},
volume = {189},
number = {1},
year = {2008},
doi = {10.4064/sm189-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm189-1-3/}
}
TY - JOUR AU - Taras Banakh AU - Mirna Džamonja AU - Lorenz Halbeisen TI - Non-separable Banach spaces with non-meager Hamel basis JO - Studia Mathematica PY - 2008 SP - 27 EP - 34 VL - 189 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm189-1-3/ DO - 10.4064/sm189-1-3 LA - en ID - 10_4064_sm189_1_3 ER -
Taras Banakh; Mirna Džamonja; Lorenz Halbeisen. Non-separable Banach spaces with non-meager Hamel basis. Studia Mathematica, Tome 189 (2008) no. 1, pp. 27-34. doi: 10.4064/sm189-1-3
Cité par Sources :