1Instytut Matematyki Uniwersytet Humanistyczno-Przyrodniczy im. Jana Kochanowskiego w Kielcach Świ/etokrzyska 15 25-406 Kielce, Poland and Department of Mathematics Ivan Franko National University of Lviv 1 Universytetska St. 79000 Lviv, Ukraine 2Department of Mathematics University of East Anglia Norwich, NR4 7TJ, United Kingdom 3Theoretische Informatik und Logik Universität Bern Neubrückstr. 10 3012 Bern, Switzerland
Studia Mathematica, Tome 189 (2008) no. 1, pp. 27-34
We show that an infinite-dimensional complete linear
space $X$ has:$\bullet$ a dense hereditarily Baire Hamel basis if $|X|\le{\mathfrak c}^+$;$\bullet$ a dense non-meager Hamel basis if $|X|=\kappa^\omega=2^\kappa$ for
some cardinal $\kappa$.
1
Instytut Matematyki Uniwersytet Humanistyczno-Przyrodniczy im. Jana Kochanowskiego w Kielcach Świ/etokrzyska 15 25-406 Kielce, Poland and Department of Mathematics Ivan Franko National University of Lviv 1 Universytetska St. 79000 Lviv, Ukraine
2
Department of Mathematics University of East Anglia Norwich, NR4 7TJ, United Kingdom
3
Theoretische Informatik und Logik Universität Bern Neubrückstr. 10 3012 Bern, Switzerland
@article{10_4064_sm189_1_3,
author = {Taras Banakh and Mirna D\v{z}amonja and Lorenz Halbeisen},
title = {Non-separable {Banach} spaces with non-meager {Hamel} basis},
journal = {Studia Mathematica},
pages = {27--34},
year = {2008},
volume = {189},
number = {1},
doi = {10.4064/sm189-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm189-1-3/}
}
TY - JOUR
AU - Taras Banakh
AU - Mirna Džamonja
AU - Lorenz Halbeisen
TI - Non-separable Banach spaces with non-meager Hamel basis
JO - Studia Mathematica
PY - 2008
SP - 27
EP - 34
VL - 189
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm189-1-3/
DO - 10.4064/sm189-1-3
LA - en
ID - 10_4064_sm189_1_3
ER -