On the reduction of pairs of bounded closed convex sets
Studia Mathematica, Tome 189 (2008) no. 1, pp. 1-12
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be a Hausdorff topological vector space. For nonempty bounded closed convex sets $A,B,C,D \subset X$ we denote by $A \mathbin {\dotplus }B$ the closure of the algebraic sum $A + B$, and call the pairs $(A,B)$ and $(C,D)$ equivalent if $A \mathbin {\dotplus }D = B \mathbin {\dotplus }C$. We prove two main theorems on reduction of equivalent pairs. The first theorem implies that, in a finite-dimensional space, a pair of nonempty compact convex sets with a piecewise smooth boundary and parallel tangent spaces at some boundary points is not minimal. The second theorem generalizes and unifies two main techniques of reduction of pairs of compact convex sets.
Keywords:
hausdorff topological vector space nonempty bounded closed convex sets d subset denote mathbin dotplus closure algebraic sum call pairs equivalent mathbin dotplus mathbin dotplus prove main theorems reduction equivalent pairs first theorem implies finite dimensional space pair nonempty compact convex sets piecewise smooth boundary parallel tangent spaces boundary points minimal second theorem generalizes unifies main techniques reduction pairs compact convex sets
Affiliations des auteurs :
J. Grzybowski 1 ; D. Pallaschke 2 ; R. Urbański 1
@article{10_4064_sm189_1_1,
author = {J. Grzybowski and D. Pallaschke and R. Urba\'nski},
title = {On the reduction of pairs of bounded closed convex sets},
journal = {Studia Mathematica},
pages = {1--12},
publisher = {mathdoc},
volume = {189},
number = {1},
year = {2008},
doi = {10.4064/sm189-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm189-1-1/}
}
TY - JOUR AU - J. Grzybowski AU - D. Pallaschke AU - R. Urbański TI - On the reduction of pairs of bounded closed convex sets JO - Studia Mathematica PY - 2008 SP - 1 EP - 12 VL - 189 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm189-1-1/ DO - 10.4064/sm189-1-1 LA - en ID - 10_4064_sm189_1_1 ER -
J. Grzybowski; D. Pallaschke; R. Urbański. On the reduction of pairs of bounded closed convex sets. Studia Mathematica, Tome 189 (2008) no. 1, pp. 1-12. doi: 10.4064/sm189-1-1
Cité par Sources :