On unconditionally saturated Banach spaces
Studia Mathematica, Tome 188 (2008) no. 2, pp. 175-191
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a
structural property of the class of unconditionally saturated
separable Banach spaces. We show, in particular, that for every
analytic set $\mathcal{A}$, in the Effros–Borel space of subspaces of
$C[0,1]$, of unconditionally saturated separable Banach spaces,
there exists an unconditionally saturated Banach space $Y$, with a
Schauder basis, that contains isomorphic copies of every space $X$
in the class $\mathcal{A}$.
Keywords:
prove structural property class unconditionally saturated separable banach spaces particular every analytic set mathcal effros borel space subspaces unconditionally saturated separable banach spaces there exists unconditionally saturated banach space schauder basis contains isomorphic copies every space class mathcal
Affiliations des auteurs :
Pandelis Dodos 1 ; Jordi Lopez-Abad 2
@article{10_4064_sm188_2_5,
author = {Pandelis Dodos and Jordi Lopez-Abad},
title = {On unconditionally saturated {Banach} spaces},
journal = {Studia Mathematica},
pages = {175--191},
publisher = {mathdoc},
volume = {188},
number = {2},
year = {2008},
doi = {10.4064/sm188-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm188-2-5/}
}
Pandelis Dodos; Jordi Lopez-Abad. On unconditionally saturated Banach spaces. Studia Mathematica, Tome 188 (2008) no. 2, pp. 175-191. doi: 10.4064/sm188-2-5
Cité par Sources :