The maximal theorem for weighted grand Lebesgue
spaces
Studia Mathematica, Tome 188 (2008) no. 2, pp. 123-133
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the Hardy inequality and
derive the maximal theorem of Hardy and Littlewood in the context
of grand Lebesgue spaces, considered when the underlying measure
space is the interval $(0,1)\subset\mathbb R$, and the maximal
function is localized in $(0,1)$. Moreover, we prove that the
inequality $\| Mf\|_{p),w}\le c\| f\|_{p),w}$ holds with some $c$
independent of $f$ iff $w$ belongs to the well known Muckenhoupt
class $A_p$, and therefore iff $\| Mf\|_{p,w}\le c\| f\|_{p,w}$
for some $c$ independent of $f$. Some results of similar type are
discussed for the case of small Lebesgue spaces.
Keywords:
study hardy inequality derive maximal theorem hardy littlewood context grand lebesgue spaces considered underlying measure space interval subset mathbb maximal function localized moreover prove inequality holds independent belongs known muckenhoupt class therefore independent results similar type discussed small lebesgue spaces
Affiliations des auteurs :
Alberto Fiorenza 1 ; Babita Gupta 2 ; Pankaj Jain 3
@article{10_4064_sm188_2_2,
author = {Alberto Fiorenza and Babita Gupta and Pankaj Jain},
title = {The maximal theorem for weighted grand {Lebesgue
spaces}},
journal = {Studia Mathematica},
pages = {123--133},
publisher = {mathdoc},
volume = {188},
number = {2},
year = {2008},
doi = {10.4064/sm188-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm188-2-2/}
}
TY - JOUR AU - Alberto Fiorenza AU - Babita Gupta AU - Pankaj Jain TI - The maximal theorem for weighted grand Lebesgue spaces JO - Studia Mathematica PY - 2008 SP - 123 EP - 133 VL - 188 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm188-2-2/ DO - 10.4064/sm188-2-2 LA - en ID - 10_4064_sm188_2_2 ER -
Alberto Fiorenza; Babita Gupta; Pankaj Jain. The maximal theorem for weighted grand Lebesgue spaces. Studia Mathematica, Tome 188 (2008) no. 2, pp. 123-133. doi: 10.4064/sm188-2-2
Cité par Sources :