Linear maps on $M_n(\mathbb C)$ preserving the local spectral radius
Studia Mathematica, Tome 188 (2008) no. 1, pp. 67-75

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $x_0$ be a nonzero vector in $\mathbb C^n$. We show that a linear map ${\mit\Phi}:M_n(\mathbb C)\to M_n(\mathbb C)$ preserves the local spectral radius at $x_0$ if and only if there is $\alpha\in\mathbb C$ of modulus one and an invertible matrix $A\in M_n(\mathbb C)$ such that $Ax_0=x_0$ and ${\mit\Phi}(T)=\alpha ATA^{-1}$ for all $T\in M_n(\mathbb C)$.
DOI : 10.4064/sm188-1-4
Keywords: nonzero vector mathbb linear map mit phi mathbb mathbb preserves local spectral radius only there alpha mathbb modulus invertible matrix mathbb mit phi alpha ata mathbb

Abdellatif Bourhim 1 ; Vivien G. Miller 2

1 Département de mathématiques et de statistique Université Laval Québec, Canada G1K 7P4
2 Department of Mathematics and Statistics Mississippi State University Mississippi State, MS 39762, U.S.A.
@article{10_4064_sm188_1_4,
     author = {Abdellatif Bourhim and Vivien G. Miller},
     title = {Linear maps on $M_n(\mathbb C)$ preserving the local spectral radius},
     journal = {Studia Mathematica},
     pages = {67--75},
     publisher = {mathdoc},
     volume = {188},
     number = {1},
     year = {2008},
     doi = {10.4064/sm188-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm188-1-4/}
}
TY  - JOUR
AU  - Abdellatif Bourhim
AU  - Vivien G. Miller
TI  - Linear maps on $M_n(\mathbb C)$ preserving the local spectral radius
JO  - Studia Mathematica
PY  - 2008
SP  - 67
EP  - 75
VL  - 188
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm188-1-4/
DO  - 10.4064/sm188-1-4
LA  - en
ID  - 10_4064_sm188_1_4
ER  - 
%0 Journal Article
%A Abdellatif Bourhim
%A Vivien G. Miller
%T Linear maps on $M_n(\mathbb C)$ preserving the local spectral radius
%J Studia Mathematica
%D 2008
%P 67-75
%V 188
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm188-1-4/
%R 10.4064/sm188-1-4
%G en
%F 10_4064_sm188_1_4
Abdellatif Bourhim; Vivien G. Miller. Linear maps on $M_n(\mathbb C)$ preserving the local spectral radius. Studia Mathematica, Tome 188 (2008) no. 1, pp. 67-75. doi: 10.4064/sm188-1-4

Cité par Sources :