1Département de mathématiques et de statistique Université Laval Québec, Canada G1K 7P4 2Department of Mathematics and Statistics Mississippi State University Mississippi State, MS 39762, U.S.A.
Studia Mathematica, Tome 188 (2008) no. 1, pp. 67-75
Let $x_0$
be a nonzero vector in $\mathbb C^n$. We show that a linear map
${\mit\Phi}:M_n(\mathbb C)\to M_n(\mathbb C)$ preserves the local spectral radius
at $x_0$ if and only if there is $\alpha\in\mathbb C$ of modulus one and
an invertible matrix $A\in M_n(\mathbb C)$ such that $Ax_0=x_0$ and
${\mit\Phi}(T)=\alpha ATA^{-1}$ for all $T\in M_n(\mathbb C)$.
Keywords:
nonzero vector mathbb linear map mit phi mathbb mathbb preserves local spectral radius only there alpha mathbb modulus invertible matrix mathbb mit phi alpha ata mathbb
Affiliations des auteurs :
Abdellatif Bourhim 
1
;
Vivien G. Miller 
2
1
Département de mathématiques et de statistique Université Laval Québec, Canada G1K 7P4
2
Department of Mathematics and Statistics Mississippi State University Mississippi State, MS 39762, U.S.A.
@article{10_4064_sm188_1_4,
author = {Abdellatif Bourhim and Vivien G. Miller},
title = {Linear maps on $M_n(\mathbb C)$ preserving the local spectral radius},
journal = {Studia Mathematica},
pages = {67--75},
year = {2008},
volume = {188},
number = {1},
doi = {10.4064/sm188-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm188-1-4/}
}
TY - JOUR
AU - Abdellatif Bourhim
AU - Vivien G. Miller
TI - Linear maps on $M_n(\mathbb C)$ preserving the local spectral radius
JO - Studia Mathematica
PY - 2008
SP - 67
EP - 75
VL - 188
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm188-1-4/
DO - 10.4064/sm188-1-4
LA - en
ID - 10_4064_sm188_1_4
ER -
%0 Journal Article
%A Abdellatif Bourhim
%A Vivien G. Miller
%T Linear maps on $M_n(\mathbb C)$ preserving the local spectral radius
%J Studia Mathematica
%D 2008
%P 67-75
%V 188
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm188-1-4/
%R 10.4064/sm188-1-4
%G en
%F 10_4064_sm188_1_4
Abdellatif Bourhim; Vivien G. Miller. Linear maps on $M_n(\mathbb C)$ preserving the local spectral radius. Studia Mathematica, Tome 188 (2008) no. 1, pp. 67-75. doi: 10.4064/sm188-1-4