On the perturbation functions and similarity orbits
Studia Mathematica, Tome 188 (2008) no. 1, pp. 57-66

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the essential spectral radius $ \varrho_e (T)$ of $T\in B(H)$ can be calculated by the formula $ \varrho_e (T) = \inf \{ {\cal{F}}_{\sharp \cdot\sharp } (X T X^{-1}) :X$ an invertible operator$\},$ where ${\cal{F}}_{\sharp \cdot\sharp } (T)$ is a ${\mit\Phi}_1$-perturbation function introduced by Mbekhta [J. Operator Theory 51 (2004)]. Also, we show that if ${\cal{G}}_{\sharp \cdot\sharp } (T)$ is a ${\mit\Phi}_2$-perturbation function [loc. cit.] and if $T$ is a Fredholm operator, then $ \mathop{\rm dist}(0,\sigma_e(T)) = \sup \{ {\cal{G}}_{\sharp \cdot\sharp } (X T X^{-1}): X$ an invertible operator$\}.$
DOI : 10.4064/sm188-1-3
Keywords: essential spectral radius varrho calculated formula varrho inf cal sharp cdot sharp invertible operator where cal sharp cdot sharp mit phi perturbation function introduced mbekhta operator theory cal sharp cdot sharp mit phi perturbation function loc cit fredholm operator mathop dist sigma sup cal sharp cdot sharp invertible operator

Haïkel Skhiri 1

1 Département de Mathématiques Faculté des Sciences de Monastir Avenue de l'environnement 5019 Monastir, Tunisie
@article{10_4064_sm188_1_3,
     author = {Ha{\"\i}kel Skhiri},
     title = {On the  perturbation functions and similarity orbits},
     journal = {Studia Mathematica},
     pages = {57--66},
     publisher = {mathdoc},
     volume = {188},
     number = {1},
     year = {2008},
     doi = {10.4064/sm188-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm188-1-3/}
}
TY  - JOUR
AU  - Haïkel Skhiri
TI  - On the  perturbation functions and similarity orbits
JO  - Studia Mathematica
PY  - 2008
SP  - 57
EP  - 66
VL  - 188
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm188-1-3/
DO  - 10.4064/sm188-1-3
LA  - en
ID  - 10_4064_sm188_1_3
ER  - 
%0 Journal Article
%A Haïkel Skhiri
%T On the  perturbation functions and similarity orbits
%J Studia Mathematica
%D 2008
%P 57-66
%V 188
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm188-1-3/
%R 10.4064/sm188-1-3
%G en
%F 10_4064_sm188_1_3
Haïkel Skhiri. On the  perturbation functions and similarity orbits. Studia Mathematica, Tome 188 (2008) no. 1, pp. 57-66. doi: 10.4064/sm188-1-3

Cité par Sources :