On the perturbation functions and similarity orbits
Studia Mathematica, Tome 188 (2008) no. 1, pp. 57-66
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the essential spectral
radius $ \varrho_e (T)$ of $T\in B(H)$ can be calculated by the
formula $ \varrho_e (T) = \inf \{ {\cal{F}}_{\sharp \cdot\sharp }
(X T X^{-1}) :X$ an invertible operator$\},$ where
${\cal{F}}_{\sharp \cdot\sharp } (T)$ is a
${\mit\Phi}_1$-perturbation function introduced by Mbekhta [J.
Operator Theory 51 (2004)]. Also, we show that if
${\cal{G}}_{\sharp \cdot\sharp } (T)$ is a
${\mit\Phi}_2$-perturbation function [loc. cit.] and if $T$ is a
Fredholm operator, then $ \mathop{\rm dist}(0,\sigma_e(T)) = \sup \{
{\cal{G}}_{\sharp \cdot\sharp } (X T X^{-1}): X$ an invertible
operator$\}.$
Keywords:
essential spectral radius varrho calculated formula varrho inf cal sharp cdot sharp invertible operator where cal sharp cdot sharp mit phi perturbation function introduced mbekhta operator theory cal sharp cdot sharp mit phi perturbation function loc cit fredholm operator mathop dist sigma sup cal sharp cdot sharp invertible operator
Affiliations des auteurs :
Haïkel Skhiri 1
@article{10_4064_sm188_1_3,
author = {Ha{\"\i}kel Skhiri},
title = {On the perturbation functions and similarity orbits},
journal = {Studia Mathematica},
pages = {57--66},
publisher = {mathdoc},
volume = {188},
number = {1},
year = {2008},
doi = {10.4064/sm188-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm188-1-3/}
}
Haïkel Skhiri. On the perturbation functions and similarity orbits. Studia Mathematica, Tome 188 (2008) no. 1, pp. 57-66. doi: 10.4064/sm188-1-3
Cité par Sources :