Deformation coproducts and differential maps
Studia Mathematica, Tome 188 (2008) no. 1, pp. 1-16
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathcal{T}$ be the Itô Hopf algebra over an associative algebra $
\mathcal{L}$ into which the universal enveloping algebra $\mathcal{U}$ of
the commutator Lie algebra $\mathcal{L}$ is embedded as the subalgebra of
symmetric tensors. We show that there is a one-to-one correspondence between
deformations $\Delta [h]$ of the coproduct in $\mathcal{T}$ and pairs
$(\mathop{\mathrel{d}}\limits^\to[h],$
$\mathop{\mathrel{d}}\limits^\gets
[h])$ of right and
left differential maps which are deformations of the differential maps for $
\mathcal{T}$
[Hudson and Pulmannová, J. Math. Phys. 45 (2004)].
Corresponding to the multiplicativity and
coassociativity of $\Delta [h],$
$\mathop{\mathrel{d}}\limits^\to[h]$ and $
\mathop{\mathrel{d}}\limits^\gets[h]$
satisfy the Leibniz–Itô formula and a
mutual commutativity condition. $\Delta [h]$ is recovered from
$\mathop{\mathrel{d}}\limits^\to[h]$ and $
\mathop{\mathrel{d}}\limits^\gets
[h]$ by a generalised
Taylor expansion. As an illustrative example we consider the differential
maps corresponding to the quantisation of quasitriangular commutator Lie
bialgebras of [Hudson and Pulmannová, Lett. Math. Phys. 72 (2005)].
Keywords:
mathcal hopf algebra associative algebra mathcal which universal enveloping algebra mathcal commutator lie algebra mathcal embedded subalgebra symmetric tensors there one to one correspondence between deformations delta coproduct mathcal pairs mathop mathrel limits mathop mathrel limits gets right differential maps which deformations differential maps mathcal hudson pulmannov nbsp math phys corresponding multiplicativity coassociativity delta mathop mathrel limits mathop mathrel limits gets satisfy leibniz formula mutual commutativity condition delta nbsp recovered mathop mathrel limits mathop mathrel limits gets generalised taylor expansion illustrative example consider differential maps corresponding quantisation quasitriangular commutator lie bialgebras hudson pulmannov lett math phys
Affiliations des auteurs :
R. L. Hudson 1 ; S. Pulmannová 2
@article{10_4064_sm188_1_1,
author = {R. L. Hudson and S. Pulmannov\'a},
title = {Deformation coproducts and differential maps},
journal = {Studia Mathematica},
pages = {1--16},
publisher = {mathdoc},
volume = {188},
number = {1},
year = {2008},
doi = {10.4064/sm188-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm188-1-1/}
}
R. L. Hudson; S. Pulmannová. Deformation coproducts and differential maps. Studia Mathematica, Tome 188 (2008) no. 1, pp. 1-16. doi: 10.4064/sm188-1-1
Cité par Sources :