Dirichlet series induced by the Riemann zeta-function
Studia Mathematica, Tome 187 (2008) no. 2, pp. 157-184
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The Riemann zeta-function $\zeta(s)$ extends to an outer function in
ergodic Hardy spaces on $\mathbb{T}^\omega$, the
infinite-dimensional torus indexed by primes $p$. This enables us to
investigate collectively certain properties of Dirichlet series of
the form ${\mathfrak z}(\{a_p\},s) = \prod_p (1-a_p p^{-s})^{-1}$ for
$\{a_p\}$ in $\mathbb{T}^\omega$. Among other things, using the Haar
measure on $\mathbb{T}^\omega$ for measuring the asymptotic behavior
of $\zeta(s)$ in the critical strip, we shall prove, in a weak sense,
the mean-value theorem for $\zeta(s)$, equivalent to the Lindelöf
hypothesis.
Keywords:
riemann zeta function zeta extends outer function ergodic hardy spaces mathbb omega infinite dimensional torus indexed primes enables investigate collectively certain properties dirichlet series form mathfrak prod a s mathbb omega among other things using haar measure mathbb omega measuring asymptotic behavior zeta critical strip shall prove weak sense mean value theorem zeta equivalent lindel hypothesis
Affiliations des auteurs :
Jun-ichi Tanaka 1
@article{10_4064_sm187_2_4,
author = {Jun-ichi Tanaka},
title = {Dirichlet series induced by the {Riemann} zeta-function},
journal = {Studia Mathematica},
pages = {157--184},
publisher = {mathdoc},
volume = {187},
number = {2},
year = {2008},
doi = {10.4064/sm187-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm187-2-4/}
}
Jun-ichi Tanaka. Dirichlet series induced by the Riemann zeta-function. Studia Mathematica, Tome 187 (2008) no. 2, pp. 157-184. doi: 10.4064/sm187-2-4
Cité par Sources :