Isomorphisms of some reflexive algebras
Studia Mathematica, Tome 187 (2008) no. 1, pp. 95-100
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Suppose $\mathcal L_1$ and $\mathcal L_2$ are subspace lattices on
complex separable Banach
spaces $X$ and $Y$, respectively. We prove that under certain lattice-theoretic
conditions every isomorphism from $\mathop{\rm alg}\mathcal L_1$ to $\mathop{\rm alg}\mathcal L_2$ is quasi-spatial;
in particular, if a subspace lattice $\mathcal L$ of a complex separable Banach
space $X$ contains a sequence $E_i$ such that $(E_i)_ -\neq X$,
$E_i \subseteq E_{i+1}$, and
$\bigvee_{i=1}^{\infty} E_i = X$ then every automorphism of $\mathop{\rm alg}
\mathcal L$ is quasi-spatial.
Keywords:
suppose mathcal mathcal subspace lattices complex separable banach spaces respectively prove under certain lattice theoretic conditions every isomorphism mathop alg mathcal mathop alg mathcal quasi spatial particular subspace lattice mathcal complex separable banach space contains sequence neq subseteq bigvee infty every automorphism mathop alg mathcal quasi spatial
Affiliations des auteurs :
Jiankui Li 1 ; Zhidong Pan 2
@article{10_4064_sm187_1_5,
author = {Jiankui Li and Zhidong Pan},
title = {Isomorphisms of some reflexive algebras},
journal = {Studia Mathematica},
pages = {95--100},
publisher = {mathdoc},
volume = {187},
number = {1},
year = {2008},
doi = {10.4064/sm187-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm187-1-5/}
}
Jiankui Li; Zhidong Pan. Isomorphisms of some reflexive algebras. Studia Mathematica, Tome 187 (2008) no. 1, pp. 95-100. doi: 10.4064/sm187-1-5
Cité par Sources :