Ascent spectrum and essential ascent spectrum
Studia Mathematica, Tome 187 (2008) no. 1, pp. 59-73
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the essential ascent and the related essential ascent spectrum of an
operator on a Banach space. We show that a Banach space $X$ has finite
dimension if and only if the essential ascent of every operator on $X$ is
finite. We also focus on the stability of the essential ascent spectrum under
perturbations, and we prove that an operator $F$ on $X$ has some finite rank
power if and only if $\sigma_{{\rm asc}}^{{\rm e}} (T+F)=\sigma_{{\rm asc}}^{{\rm e}} (T)$ for every operator $T$
commuting with $F$. The quasi-nilpotent part, the analytic core and
the single-valued extension property are also analyzed for
operators with finite
essential ascent.
Keywords:
study essential ascent related essential ascent spectrum operator banach space banach space has finite dimension only essential ascent every operator finite focus stability essential ascent spectrum under perturbations prove operator has finite rank power only sigma asc sigma asc every operator commuting quasi nilpotent part analytic core single valued extension property analyzed operators finite essential ascent
Affiliations des auteurs :
O. Bel Hadj Fredj 1 ; M. Burgos 2 ; M. Oudghiri 3
@article{10_4064_sm187_1_3,
author = {O. Bel Hadj Fredj and M. Burgos and M. Oudghiri},
title = {Ascent spectrum and essential ascent spectrum},
journal = {Studia Mathematica},
pages = {59--73},
publisher = {mathdoc},
volume = {187},
number = {1},
year = {2008},
doi = {10.4064/sm187-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm187-1-3/}
}
TY - JOUR AU - O. Bel Hadj Fredj AU - M. Burgos AU - M. Oudghiri TI - Ascent spectrum and essential ascent spectrum JO - Studia Mathematica PY - 2008 SP - 59 EP - 73 VL - 187 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm187-1-3/ DO - 10.4064/sm187-1-3 LA - en ID - 10_4064_sm187_1_3 ER -
O. Bel Hadj Fredj; M. Burgos; M. Oudghiri. Ascent spectrum and essential ascent spectrum. Studia Mathematica, Tome 187 (2008) no. 1, pp. 59-73. doi: 10.4064/sm187-1-3
Cité par Sources :