The algebraic and topological reflexivity of $C(X)$ and $C(X,E)$ are investigated by using representations for the into isometries due to Holsztyński and Cambern.
@article{10_4064_sm186_3_7,
author = {Fernanda Botelho and James Jamison},
title = {Algebraic reflexivity of $C(X,E)$ and {Cambern's} theorem},
journal = {Studia Mathematica},
pages = {295--302},
year = {2008},
volume = {186},
number = {3},
doi = {10.4064/sm186-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-7/}
}
TY - JOUR
AU - Fernanda Botelho
AU - James Jamison
TI - Algebraic reflexivity of $C(X,E)$ and Cambern's theorem
JO - Studia Mathematica
PY - 2008
SP - 295
EP - 302
VL - 186
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-7/
DO - 10.4064/sm186-3-7
LA - en
ID - 10_4064_sm186_3_7
ER -
%0 Journal Article
%A Fernanda Botelho
%A James Jamison
%T Algebraic reflexivity of $C(X,E)$ and Cambern's theorem
%J Studia Mathematica
%D 2008
%P 295-302
%V 186
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-7/
%R 10.4064/sm186-3-7
%G en
%F 10_4064_sm186_3_7
Fernanda Botelho; James Jamison. Algebraic reflexivity of $C(X,E)$ and Cambern's theorem. Studia Mathematica, Tome 186 (2008) no. 3, pp. 295-302. doi: 10.4064/sm186-3-7