Algebraic reflexivity of $C(X,E)$ and Cambern's theorem
Studia Mathematica, Tome 186 (2008) no. 3, pp. 295-302

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The algebraic and topological reflexivity of $C(X)$ and $C(X,E)$ are investigated by using representations for the into isometries due to Holsztyński and Cambern.
DOI : 10.4064/sm186-3-7
Keywords: algebraic topological reflexivity investigated using representations isometries due holszty ski cambern

Fernanda Botelho 1 ; James Jamison 1

1 Department of Mathematical Sciences The University of Memphis Memphis, TN 38152, U.S.A.
@article{10_4064_sm186_3_7,
     author = {Fernanda Botelho and James Jamison},
     title = {Algebraic reflexivity of $C(X,E)$ and {Cambern's} theorem},
     journal = {Studia Mathematica},
     pages = {295--302},
     publisher = {mathdoc},
     volume = {186},
     number = {3},
     year = {2008},
     doi = {10.4064/sm186-3-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-7/}
}
TY  - JOUR
AU  - Fernanda Botelho
AU  - James Jamison
TI  - Algebraic reflexivity of $C(X,E)$ and Cambern's theorem
JO  - Studia Mathematica
PY  - 2008
SP  - 295
EP  - 302
VL  - 186
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-7/
DO  - 10.4064/sm186-3-7
LA  - en
ID  - 10_4064_sm186_3_7
ER  - 
%0 Journal Article
%A Fernanda Botelho
%A James Jamison
%T Algebraic reflexivity of $C(X,E)$ and Cambern's theorem
%J Studia Mathematica
%D 2008
%P 295-302
%V 186
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-7/
%R 10.4064/sm186-3-7
%G en
%F 10_4064_sm186_3_7
Fernanda Botelho; James Jamison. Algebraic reflexivity of $C(X,E)$ and Cambern's theorem. Studia Mathematica, Tome 186 (2008) no. 3, pp. 295-302. doi: 10.4064/sm186-3-7

Cité par Sources :