Ekeland's variational principle in locally
$p$-convex spaces and related results
Studia Mathematica, Tome 186 (2008) no. 3, pp. 219-235
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In the framework of locally $p$-convex spaces, two versions of Ekeland's variational principle and two versions of Caristi's fixed point theorem are given. It is shown that the four results are mutually equivalent. Moreover, by using the local completeness theory, a $p$-drop theorem in locally $p$-convex spaces is proven.
Keywords:
framework locally p convex spaces versions ekelands variational principle versions caristis fixed point theorem given shown results mutually equivalent moreover using local completeness theory p drop theorem locally p convex spaces proven
Affiliations des auteurs :
J. H. Qiu 1 ; S. Rolewicz 2
@article{10_4064_sm186_3_2,
author = {J. H. Qiu and S. Rolewicz},
title = {Ekeland's variational principle in locally
$p$-convex spaces and related results},
journal = {Studia Mathematica},
pages = {219--235},
year = {2008},
volume = {186},
number = {3},
doi = {10.4064/sm186-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-2/}
}
TY - JOUR AU - J. H. Qiu AU - S. Rolewicz TI - Ekeland's variational principle in locally $p$-convex spaces and related results JO - Studia Mathematica PY - 2008 SP - 219 EP - 235 VL - 186 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm186-3-2/ DO - 10.4064/sm186-3-2 LA - en ID - 10_4064_sm186_3_2 ER -
J. H. Qiu; S. Rolewicz. Ekeland's variational principle in locally $p$-convex spaces and related results. Studia Mathematica, Tome 186 (2008) no. 3, pp. 219-235. doi: 10.4064/sm186-3-2
Cité par Sources :