Jacobi decomposition of weighted Triebel–Lizorkin and Besov spaces
Studia Mathematica, Tome 186 (2008) no. 2, pp. 161-202

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Littlewood–Paley theory is extended to weighted spaces of distributions on $[-1,1]$ with Jacobi weights $w(t)=(1-t)^\alpha(1+t)^\beta.$ Almost exponentially localized polynomial elements (needlets) $\{\varphi_\xi\}$, $\{\psi_\xi\}$ are constructed and, in complete analogy with the classical case on $\mathbb R^n$, it is shown that weighted Triebel–Lizorkin and Besov spaces can be characterized by the size of the needlet coefficients $\{\langle f,\varphi_\xi\rangle\}$ in respective sequence spaces.
DOI : 10.4064/sm186-2-3
Keywords: littlewood paley theory extended weighted spaces distributions jacobi weights t alpha beta almost exponentially localized polynomial elements needlets varphi psi constructed complete analogy classical mathbb shown weighted triebel lizorkin besov spaces characterized size needlet coefficients langle varphi rangle respective sequence spaces

George Kyriazis 1 ; Pencho Petrushev 2 ; Yuan Xu 3

1 Department of Mathematics and Statistics University of Cyprus 1678 Nicosia, Cyprus
2 Department of Mathematics University of South Carolina Columbia, SC 29208, U.S.A. and Institute of Mathematics and Informatics Bulgarian Academy of Sciences
3 Department of Mathematics University of Oregon Eugene, OR 97403, U.S.A.
@article{10_4064_sm186_2_3,
     author = {George Kyriazis and Pencho Petrushev and Yuan Xu},
     title = {Jacobi decomposition of weighted {Triebel{\textendash}Lizorkin} and {Besov} spaces},
     journal = {Studia Mathematica},
     pages = {161--202},
     publisher = {mathdoc},
     volume = {186},
     number = {2},
     year = {2008},
     doi = {10.4064/sm186-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm186-2-3/}
}
TY  - JOUR
AU  - George Kyriazis
AU  - Pencho Petrushev
AU  - Yuan Xu
TI  - Jacobi decomposition of weighted Triebel–Lizorkin and Besov spaces
JO  - Studia Mathematica
PY  - 2008
SP  - 161
EP  - 202
VL  - 186
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm186-2-3/
DO  - 10.4064/sm186-2-3
LA  - en
ID  - 10_4064_sm186_2_3
ER  - 
%0 Journal Article
%A George Kyriazis
%A Pencho Petrushev
%A Yuan Xu
%T Jacobi decomposition of weighted Triebel–Lizorkin and Besov spaces
%J Studia Mathematica
%D 2008
%P 161-202
%V 186
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm186-2-3/
%R 10.4064/sm186-2-3
%G en
%F 10_4064_sm186_2_3
George Kyriazis; Pencho Petrushev; Yuan Xu. Jacobi decomposition of weighted Triebel–Lizorkin and Besov spaces. Studia Mathematica, Tome 186 (2008) no. 2, pp. 161-202. doi: 10.4064/sm186-2-3

Cité par Sources :