Compactness of Sobolev imbeddings involving
 rearrangement-invariant norms
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 186 (2008) no. 2, pp. 127-160
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We find necessary and sufficient conditions on a pair of 
rearrangement-invariant norms,
$\varrho$ and  $\sigma$, in order that the Sobolev space 
$W^{m,\varrho}({\mit\Omega})$ be 
compactly imbedded into the rearrangement-invariant space 
$L_\sigma({\mit\Omega})$, where ${\mit\Omega}$ is a bounded 
domain in ${\mathbb R}^n$ with Lipschitz boundary and $1\leq m\leq n-1$. In particular, 
we establish the equivalence of the compactness of the Sobolev 
imbedding
with the compactness of a certain Hardy operator from $L_{\varrho}(0,|{\mit\Omega}|)$ 
into $L_{\sigma}(0,|{\mit\Omega}|)$.
The results are illustrated with examples in which $\varrho$ and $\sigma$ are both
Orlicz norms or both Lorentz Gamma norms.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
necessary sufficient conditions pair rearrangement invariant norms varrho sigma order sobolev space varrho mit omega compactly imbedded rearrangement invariant space sigma mit omega where mit omega nbsp bounded domain mathbb lipschitz boundary leq leq n particular establish equivalence compactness nbsp sobolev imbedding compactness nbsp certain hardy operator varrho mit omega sigma mit omega results illustrated examples which varrho sigma orlicz norms lorentz gamma norms
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Ron Kerman 1 ; Luboš Pick 2
@article{10_4064_sm186_2_2,
     author = {Ron Kerman and Lubo\v{s} Pick},
     title = {Compactness of {Sobolev} imbeddings involving
 rearrangement-invariant norms},
     journal = {Studia Mathematica},
     pages = {127--160},
     publisher = {mathdoc},
     volume = {186},
     number = {2},
     year = {2008},
     doi = {10.4064/sm186-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm186-2-2/}
}
                      
                      
                    TY - JOUR AU - Ron Kerman AU - Luboš Pick TI - Compactness of Sobolev imbeddings involving rearrangement-invariant norms JO - Studia Mathematica PY - 2008 SP - 127 EP - 160 VL - 186 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm186-2-2/ DO - 10.4064/sm186-2-2 LA - en ID - 10_4064_sm186_2_2 ER -
Ron Kerman; Luboš Pick. Compactness of Sobolev imbeddings involving rearrangement-invariant norms. Studia Mathematica, Tome 186 (2008) no. 2, pp. 127-160. doi: 10.4064/sm186-2-2
Cité par Sources :
