Compactness of Sobolev imbeddings involving rearrangement-invariant norms
Studia Mathematica, Tome 186 (2008) no. 2, pp. 127-160

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We find necessary and sufficient conditions on a pair of rearrangement-invariant norms, $\varrho$ and $\sigma$, in order that the Sobolev space $W^{m,\varrho}({\mit\Omega})$ be compactly imbedded into the rearrangement-invariant space $L_\sigma({\mit\Omega})$, where ${\mit\Omega}$ is a bounded domain in ${\mathbb R}^n$ with Lipschitz boundary and $1\leq m\leq n-1$. In particular, we establish the equivalence of the compactness of the Sobolev imbedding with the compactness of a certain Hardy operator from $L_{\varrho}(0,|{\mit\Omega}|)$ into $L_{\sigma}(0,|{\mit\Omega}|)$. The results are illustrated with examples in which $\varrho$ and $\sigma$ are both Orlicz norms or both Lorentz Gamma norms.
DOI : 10.4064/sm186-2-2
Keywords: necessary sufficient conditions pair rearrangement invariant norms varrho sigma order sobolev space varrho mit omega compactly imbedded rearrangement invariant space sigma mit omega where mit omega nbsp bounded domain mathbb lipschitz boundary leq leq n particular establish equivalence compactness nbsp sobolev imbedding compactness nbsp certain hardy operator varrho mit omega sigma mit omega results illustrated examples which varrho sigma orlicz norms lorentz gamma norms

Ron Kerman 1 ; Luboš Pick 2

1 Department of Mathematics Brock University 500 Glenridge Avenue St. Catharines, Ontario Canada L2S 3A1
2 Department of Mathematical Analysis Faculty of Mathematics and Physics Charles University Sokolovská 83 186 75 Praha 8, Czech Republic
@article{10_4064_sm186_2_2,
     author = {Ron Kerman and Lubo\v{s} Pick},
     title = {Compactness of {Sobolev} imbeddings involving
 rearrangement-invariant norms},
     journal = {Studia Mathematica},
     pages = {127--160},
     publisher = {mathdoc},
     volume = {186},
     number = {2},
     year = {2008},
     doi = {10.4064/sm186-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm186-2-2/}
}
TY  - JOUR
AU  - Ron Kerman
AU  - Luboš Pick
TI  - Compactness of Sobolev imbeddings involving
 rearrangement-invariant norms
JO  - Studia Mathematica
PY  - 2008
SP  - 127
EP  - 160
VL  - 186
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm186-2-2/
DO  - 10.4064/sm186-2-2
LA  - en
ID  - 10_4064_sm186_2_2
ER  - 
%0 Journal Article
%A Ron Kerman
%A Luboš Pick
%T Compactness of Sobolev imbeddings involving
 rearrangement-invariant norms
%J Studia Mathematica
%D 2008
%P 127-160
%V 186
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm186-2-2/
%R 10.4064/sm186-2-2
%G en
%F 10_4064_sm186_2_2
Ron Kerman; Luboš Pick. Compactness of Sobolev imbeddings involving
 rearrangement-invariant norms. Studia Mathematica, Tome 186 (2008) no. 2, pp. 127-160. doi: 10.4064/sm186-2-2

Cité par Sources :