Weyl type theorem for operator matrices
Studia Mathematica, Tome 186 (2008) no. 1, pp. 29-39

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Using topological uniform descent, we give necessary and sufficient conditions for Browder's theorem and Weyl's theorem to hold for an operator $A$. The two theorems are liable to fail for $2\times 2$ operator matrices. In this paper, we explore how they survive for $2\times 2$ operator matrices on a Hilbert space.
DOI : 10.4064/sm186-1-4
Keywords: using topological uniform descent necessary sufficient conditions browders theorem weyls theorem operator theorems liable fail times operator matrices paper explore survive times operator matrices hilbert space

Xiaohong Cao 1

1 College of Mathematics and Information Science Shaanxi Normal University Xi'an, 710062, People's Republic of China
@article{10_4064_sm186_1_4,
     author = {Xiaohong Cao},
     title = {Weyl type theorem for operator matrices},
     journal = {Studia Mathematica},
     pages = {29--39},
     publisher = {mathdoc},
     volume = {186},
     number = {1},
     year = {2008},
     doi = {10.4064/sm186-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm186-1-4/}
}
TY  - JOUR
AU  - Xiaohong Cao
TI  - Weyl type theorem for operator matrices
JO  - Studia Mathematica
PY  - 2008
SP  - 29
EP  - 39
VL  - 186
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm186-1-4/
DO  - 10.4064/sm186-1-4
LA  - en
ID  - 10_4064_sm186_1_4
ER  - 
%0 Journal Article
%A Xiaohong Cao
%T Weyl type theorem for operator matrices
%J Studia Mathematica
%D 2008
%P 29-39
%V 186
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm186-1-4/
%R 10.4064/sm186-1-4
%G en
%F 10_4064_sm186_1_4
Xiaohong Cao. Weyl type theorem for operator matrices. Studia Mathematica, Tome 186 (2008) no. 1, pp. 29-39. doi: 10.4064/sm186-1-4

Cité par Sources :