Type and cotype of operator spaces
Studia Mathematica, Tome 185 (2008) no. 3, pp. 219-247
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider two operator space versions of type and cotype, namely $S_p$-type, $S_q$-cotype and type $(p,H)$, cotype $(q,H)$ for a homogeneous Hilbertian operator space $H$ and $1\leq p \leq 2 \leq q\leq \infty $, generalizing “$OH$-cotype 2” of G. Pisier. We compute type and cotype of some Hilbertian operator spaces and $L_p$ spaces, and we investigate the relationship between a homogeneous Hilbertian space $H$ and operator spaces with cotype $(2,H)$. As applications we consider operator space versions of generalized little Grothendieck's theorem and Maurey's extension theorem in terms of these new notions.
Keywords:
consider operator space versions type cotype namely p type q cotype type cotype homogeneous hilbertian operator space leq leq leq leq infty generalizing oh cotype pisier compute type cotype hilbertian operator spaces spaces investigate relationship between homogeneous hilbertian space operator spaces cotype applications consider operator space versions generalized little grothendiecks theorem maureys extension theorem terms these notions
Affiliations des auteurs :
Hun Hee Lee 1
@article{10_4064_sm185_3_2,
author = {Hun Hee Lee},
title = {Type and cotype of operator spaces},
journal = {Studia Mathematica},
pages = {219--247},
year = {2008},
volume = {185},
number = {3},
doi = {10.4064/sm185-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm185-3-2/}
}
Hun Hee Lee. Type and cotype of operator spaces. Studia Mathematica, Tome 185 (2008) no. 3, pp. 219-247. doi: 10.4064/sm185-3-2
Cité par Sources :