On operators from separable reflexive spaces
 with asymptotic structure
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 185 (2008) no. 1, pp. 87-98
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $1 q p \infty$ and $q\leq r\leq p$. Let $X$ be a reflexive Banach space satisfying a lower-$\ell_q$-tree estimate and let $T$ be a bounded linear operator from $X$ which satisfies an upper-$\ell_p$-tree estimate.  Then $T$ factors through a subspace of $(\sum F_n)_{\ell_r}$, where $(F_n)$ is a sequence of finite-dimensional spaces. In particular, $T$ factors through a subspace of a reflexive space with an $(\ell_p, \ell_q)$ FDD. Similarly, let $1 q r p \infty$ and let $X$ be a separable reflexive Banach space satisfying an asymptotic lower-$\ell_q$-tree estimate. Let $T$ be a bounded linear operator from $X$ which satisfies an asymptotic upper-$\ell_p$-tree estimate. Then $T$ factors through a subspace 
 of $(\sum G_n)_{\ell_r}$, where $(G_n)$ is a sequence of finite-dimensional spaces. 
 In particular, $T$ factors through a subspace of a reflexive 
 space with an asymptotic $(\ell_p, \ell_q)$ FDD.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
infty leq leq reflexive banach space satisfying lower ell q tree estimate bounded linear operator which satisfies upper ell p tree estimate factors through subspace sum ell where sequence finite dimensional spaces particular factors through subspace reflexive space ell ell nbsp fdd similarly infty separable reflexive banach space satisfying asymptotic lower ell q tree estimate bounded linear operator which satisfies asymptotic upper ell p tree estimate factors through subspace sum ell where sequence finite dimensional spaces particular factors through subspace reflexive space asymptotic ell ell nbsp fdd
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Bentuo Zheng 1
@article{10_4064_sm185_1_6,
     author = {Bentuo Zheng},
     title = {On operators from separable reflexive spaces
 with asymptotic structure},
     journal = {Studia Mathematica},
     pages = {87--98},
     publisher = {mathdoc},
     volume = {185},
     number = {1},
     year = {2008},
     doi = {10.4064/sm185-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm185-1-6/}
}
                      
                      
                    TY - JOUR AU - Bentuo Zheng TI - On operators from separable reflexive spaces with asymptotic structure JO - Studia Mathematica PY - 2008 SP - 87 EP - 98 VL - 185 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm185-1-6/ DO - 10.4064/sm185-1-6 LA - en ID - 10_4064_sm185_1_6 ER -
Bentuo Zheng. On operators from separable reflexive spaces with asymptotic structure. Studia Mathematica, Tome 185 (2008) no. 1, pp. 87-98. doi: 10.4064/sm185-1-6
Cité par Sources :
