On operators from separable reflexive spaces with asymptotic structure
Studia Mathematica, Tome 185 (2008) no. 1, pp. 87-98

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $1 q p \infty$ and $q\leq r\leq p$. Let $X$ be a reflexive Banach space satisfying a lower-$\ell_q$-tree estimate and let $T$ be a bounded linear operator from $X$ which satisfies an upper-$\ell_p$-tree estimate. Then $T$ factors through a subspace of $(\sum F_n)_{\ell_r}$, where $(F_n)$ is a sequence of finite-dimensional spaces. In particular, $T$ factors through a subspace of a reflexive space with an $(\ell_p, \ell_q)$ FDD. Similarly, let $1 q r p \infty$ and let $X$ be a separable reflexive Banach space satisfying an asymptotic lower-$\ell_q$-tree estimate. Let $T$ be a bounded linear operator from $X$ which satisfies an asymptotic upper-$\ell_p$-tree estimate. Then $T$ factors through a subspace of $(\sum G_n)_{\ell_r}$, where $(G_n)$ is a sequence of finite-dimensional spaces. In particular, $T$ factors through a subspace of a reflexive space with an asymptotic $(\ell_p, \ell_q)$ FDD.
DOI : 10.4064/sm185-1-6
Keywords: infty leq leq reflexive banach space satisfying lower ell q tree estimate bounded linear operator which satisfies upper ell p tree estimate factors through subspace sum ell where sequence finite dimensional spaces particular factors through subspace reflexive space ell ell nbsp fdd similarly infty separable reflexive banach space satisfying asymptotic lower ell q tree estimate bounded linear operator which satisfies asymptotic upper ell p tree estimate factors through subspace sum ell where sequence finite dimensional spaces particular factors through subspace reflexive space asymptotic ell ell nbsp fdd

Bentuo Zheng 1

1 Department of Mathematics The University of Texas at Austin 1 University Station C1200 Austin, TX 78712-0257, U.S.A.
@article{10_4064_sm185_1_6,
     author = {Bentuo Zheng},
     title = {On operators from separable reflexive spaces
 with asymptotic structure},
     journal = {Studia Mathematica},
     pages = {87--98},
     publisher = {mathdoc},
     volume = {185},
     number = {1},
     year = {2008},
     doi = {10.4064/sm185-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm185-1-6/}
}
TY  - JOUR
AU  - Bentuo Zheng
TI  - On operators from separable reflexive spaces
 with asymptotic structure
JO  - Studia Mathematica
PY  - 2008
SP  - 87
EP  - 98
VL  - 185
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm185-1-6/
DO  - 10.4064/sm185-1-6
LA  - en
ID  - 10_4064_sm185_1_6
ER  - 
%0 Journal Article
%A Bentuo Zheng
%T On operators from separable reflexive spaces
 with asymptotic structure
%J Studia Mathematica
%D 2008
%P 87-98
%V 185
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm185-1-6/
%R 10.4064/sm185-1-6
%G en
%F 10_4064_sm185_1_6
Bentuo Zheng. On operators from separable reflexive spaces
 with asymptotic structure. Studia Mathematica, Tome 185 (2008) no. 1, pp. 87-98. doi: 10.4064/sm185-1-6

Cité par Sources :