On operators from separable reflexive spaces
with asymptotic structure
Studia Mathematica, Tome 185 (2008) no. 1, pp. 87-98
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $1 q p \infty$ and $q\leq r\leq p$. Let $X$ be a reflexive Banach space satisfying a lower-$\ell_q$-tree estimate and let $T$ be a bounded linear operator from $X$ which satisfies an upper-$\ell_p$-tree estimate. Then $T$ factors through a subspace of $(\sum F_n)_{\ell_r}$, where $(F_n)$ is a sequence of finite-dimensional spaces. In particular, $T$ factors through a subspace of a reflexive space with an $(\ell_p, \ell_q)$ FDD. Similarly, let $1 q r p \infty$ and let $X$ be a separable reflexive Banach space satisfying an asymptotic lower-$\ell_q$-tree estimate. Let $T$ be a bounded linear operator from $X$ which satisfies an asymptotic upper-$\ell_p$-tree estimate. Then $T$ factors through a subspace
of $(\sum G_n)_{\ell_r}$, where $(G_n)$ is a sequence of finite-dimensional spaces.
In particular, $T$ factors through a subspace of a reflexive
space with an asymptotic $(\ell_p, \ell_q)$ FDD.
Keywords:
infty leq leq reflexive banach space satisfying lower ell q tree estimate bounded linear operator which satisfies upper ell p tree estimate factors through subspace sum ell where sequence finite dimensional spaces particular factors through subspace reflexive space ell ell nbsp fdd similarly infty separable reflexive banach space satisfying asymptotic lower ell q tree estimate bounded linear operator which satisfies asymptotic upper ell p tree estimate factors through subspace sum ell where sequence finite dimensional spaces particular factors through subspace reflexive space asymptotic ell ell nbsp fdd
Affiliations des auteurs :
Bentuo Zheng  1
@article{10_4064_sm185_1_6,
author = {Bentuo Zheng},
title = {On operators from separable reflexive spaces
with asymptotic structure},
journal = {Studia Mathematica},
pages = {87--98},
year = {2008},
volume = {185},
number = {1},
doi = {10.4064/sm185-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm185-1-6/}
}
Bentuo Zheng. On operators from separable reflexive spaces with asymptotic structure. Studia Mathematica, Tome 185 (2008) no. 1, pp. 87-98. doi: 10.4064/sm185-1-6
Cité par Sources :