Weierstrass division theorem in quasianalytic local rings
Studia Mathematica, Tome 185 (2008) no. 1, pp. 83-86

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The main result of this paper is the following: if the Weierstrass division theorem is valid in a quasianalytic differentiable system, then this system is contained in the system of analytic germs. This result has already been known for particular examples, such as the quasianalytic Denjoy–Carleman classes.
DOI : 10.4064/sm185-1-5
Keywords: main result paper following weierstrass division theorem valid quasianalytic differentiable system system contained system analytic germs result has already known particular examples quasianalytic denjoy carleman classes

Abdelhafed Elkhadiri 1 ; Hassan Sfouli 1

1 Department of Mathematics Faculty of Sciences University Ibn Tofail B.P. 133, Kénitra, Morocco
@article{10_4064_sm185_1_5,
     author = {Abdelhafed Elkhadiri and Hassan Sfouli},
     title = {Weierstrass division theorem in quasianalytic local rings},
     journal = {Studia Mathematica},
     pages = {83--86},
     publisher = {mathdoc},
     volume = {185},
     number = {1},
     year = {2008},
     doi = {10.4064/sm185-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm185-1-5/}
}
TY  - JOUR
AU  - Abdelhafed Elkhadiri
AU  - Hassan Sfouli
TI  - Weierstrass division theorem in quasianalytic local rings
JO  - Studia Mathematica
PY  - 2008
SP  - 83
EP  - 86
VL  - 185
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm185-1-5/
DO  - 10.4064/sm185-1-5
LA  - en
ID  - 10_4064_sm185_1_5
ER  - 
%0 Journal Article
%A Abdelhafed Elkhadiri
%A Hassan Sfouli
%T Weierstrass division theorem in quasianalytic local rings
%J Studia Mathematica
%D 2008
%P 83-86
%V 185
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm185-1-5/
%R 10.4064/sm185-1-5
%G en
%F 10_4064_sm185_1_5
Abdelhafed Elkhadiri; Hassan Sfouli. Weierstrass division theorem in quasianalytic local rings. Studia Mathematica, Tome 185 (2008) no. 1, pp. 83-86. doi: 10.4064/sm185-1-5

Cité par Sources :