On the spectrum of the operator which is a composition
of integration and substitution
Studia Mathematica, Tome 185 (2008) no. 1, pp. 49-65
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $\phi : [0,1]\rightarrow [0,1]$ be a
nondecreasing continuous function such that $\phi(x)>x$ for all
$x\in (0,1)$. Let the operator $V_{\phi} :
f(x)\mapsto \int_0^{\phi(x)}f(t)\,dt$ be defined on
$L_2[0,1]$. We prove that $V_{\phi}$ has a finite number of
nonzero eigenvalues if and only if $\phi(0)>0$ and
$\phi(1-\varepsilon)=1$ for some $0\varepsilon1$. Also, we show
that the spectral trace of the operator $V_{\phi}$ always equals
$1$.
Keywords:
phi rightarrow nondecreasing continuous function phi operator phi mapsto int phi defined prove phi has finite number nonzero eigenvalues only phi phi varepsilon varepsilon spectral trace operator phi always equals
Affiliations des auteurs :
Ignat Domanov  1
@article{10_4064_sm185_1_3,
author = {Ignat Domanov},
title = {On the spectrum of the operator which is a composition
of integration and substitution},
journal = {Studia Mathematica},
pages = {49--65},
year = {2008},
volume = {185},
number = {1},
doi = {10.4064/sm185-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm185-1-3/}
}
TY - JOUR AU - Ignat Domanov TI - On the spectrum of the operator which is a composition of integration and substitution JO - Studia Mathematica PY - 2008 SP - 49 EP - 65 VL - 185 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm185-1-3/ DO - 10.4064/sm185-1-3 LA - en ID - 10_4064_sm185_1_3 ER -
Ignat Domanov. On the spectrum of the operator which is a composition of integration and substitution. Studia Mathematica, Tome 185 (2008) no. 1, pp. 49-65. doi: 10.4064/sm185-1-3
Cité par Sources :