Regularity of the symbolic calculus in Besov algebras
Studia Mathematica, Tome 184 (2008) no. 3, pp. 271-298 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We consider Besov and Lizorkin–Triebel algebras, that is, the real-valued function spaces $B_{{p},{q}}^{s}({\mathbb R}^n) \cap L_\infty(\mathbb R)$ and ${F_{{p},{q}}^{s}({\mathbb R}^n)} \cap L_\infty(\mathbb R)$ for all $s>0$. To each function $f:{\mathbb{R}}\to \mathbb{R} $ one can associate the composition operator $T_{f}$ which takes a real-valued function $g$ to the composite function $f\circ g$. We give necessary conditions and sufficient conditions on $f$ for the continuity, local Lipschitz continuity, and differentiability of any order of $T_{f}$ as a map acting in Besov and Lizorkin–Triebel algebras. In some cases, such as for $n=1$, such conditions turn out to be necessary and sufficient.
DOI : 10.4064/sm184-3-6
Keywords: consider besov lizorkin triebel algebras real valued function spaces mathbb cap infty mathbb mathbb cap infty mathbb each function mathbb mathbb associate composition operator which takes real valued function composite function circ necessary conditions sufficient conditions continuity local lipschitz continuity differentiability order map acting besov lizorkin triebel algebras cases conditions turn out necessary sufficient

Gérard Bourdaud  1   ; Massimo Lanza de Cristoforis  2

1 Institut de Mathématiques de Jussieu Projet d'analyse fonctionnelle Case 186, 4 place Jussieu 75252 Paris Cedex 05, France
2 Dipartimento di Matematica Pura ed Applicata Università di Padova Via Trieste 63 35121 Padova, Italy
@article{10_4064_sm184_3_6,
     author = {G\'erard Bourdaud and Massimo Lanza de Cristoforis},
     title = {Regularity of the symbolic calculus in {Besov} algebras},
     journal = {Studia Mathematica},
     pages = {271--298},
     year = {2008},
     volume = {184},
     number = {3},
     doi = {10.4064/sm184-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm184-3-6/}
}
TY  - JOUR
AU  - Gérard Bourdaud
AU  - Massimo Lanza de Cristoforis
TI  - Regularity of the symbolic calculus in Besov algebras
JO  - Studia Mathematica
PY  - 2008
SP  - 271
EP  - 298
VL  - 184
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm184-3-6/
DO  - 10.4064/sm184-3-6
LA  - en
ID  - 10_4064_sm184_3_6
ER  - 
%0 Journal Article
%A Gérard Bourdaud
%A Massimo Lanza de Cristoforis
%T Regularity of the symbolic calculus in Besov algebras
%J Studia Mathematica
%D 2008
%P 271-298
%V 184
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm184-3-6/
%R 10.4064/sm184-3-6
%G en
%F 10_4064_sm184_3_6
Gérard Bourdaud; Massimo Lanza de Cristoforis. Regularity of the symbolic calculus in Besov algebras. Studia Mathematica, Tome 184 (2008) no. 3, pp. 271-298. doi: 10.4064/sm184-3-6

Cité par Sources :