Linear maps preserving quasi-commutativity
Studia Mathematica, Tome 184 (2008) no. 2, pp. 191-204 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $X$ and $Y$ be Banach spaces and ${\cal B}(X)$ and ${\cal B}(Y)$ the algebras of all bounded linear operators on $X$ and $Y$, respectively. We say that $A,B \in {\cal B}(X)$ quasi-commute if there exists a nonzero scalar $\omega $ such that $AB = \omega BA$. We characterize bijective linear maps $\phi : {\cal B}(X) \to {\cal B}(Y)$ preserving quasi-commutativity. In fact, such a characterization can be proved for much more general algebras. In the finite-dimensional case the same result can be obtained without the bijectivity assumption.
DOI : 10.4064/sm184-2-7
Keywords: banach spaces cal cal algebras bounded linear operators respectively say cal quasi commute there exists nonzero scalar omega omega characterize bijective linear maps phi cal cal preserving quasi commutativity characterization proved much general algebras finite dimensional result obtained without bijectivity assumption

Heydar Radjavi  1   ; Peter Šemrl  2

1 Department of Pure Mathematics University of Waterloo 200 University Avenue West Waterloo, ON, Canada N2L 3G1
2 Department of Mathematics University of Ljubljana Jadranska 19 SI-1000 Ljubljana, Slovenia
@article{10_4064_sm184_2_7,
     author = {Heydar Radjavi and Peter \v{S}emrl},
     title = {Linear maps preserving quasi-commutativity},
     journal = {Studia Mathematica},
     pages = {191--204},
     year = {2008},
     volume = {184},
     number = {2},
     doi = {10.4064/sm184-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm184-2-7/}
}
TY  - JOUR
AU  - Heydar Radjavi
AU  - Peter Šemrl
TI  - Linear maps preserving quasi-commutativity
JO  - Studia Mathematica
PY  - 2008
SP  - 191
EP  - 204
VL  - 184
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm184-2-7/
DO  - 10.4064/sm184-2-7
LA  - en
ID  - 10_4064_sm184_2_7
ER  - 
%0 Journal Article
%A Heydar Radjavi
%A Peter Šemrl
%T Linear maps preserving quasi-commutativity
%J Studia Mathematica
%D 2008
%P 191-204
%V 184
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm184-2-7/
%R 10.4064/sm184-2-7
%G en
%F 10_4064_sm184_2_7
Heydar Radjavi; Peter Šemrl. Linear maps preserving quasi-commutativity. Studia Mathematica, Tome 184 (2008) no. 2, pp. 191-204. doi: 10.4064/sm184-2-7

Cité par Sources :