$L^p$-$L^q$ boundedness of analytic families of fractional integrals
Studia Mathematica, Tome 184 (2008) no. 2, pp. 153-174 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We consider a double analytic family of fractional integrals $S^{\gamma,\alpha}_{z}$ along the curve $t\mapsto |t|^{\alpha}$, introduced for $\alpha =2$ by L. Grafakos in 1993 and defined by $$ (S^{\gamma,\alpha}_{z}f)(x_1,x_2):= \frac{1}{{\mit\Gamma}({z+1\over2})}\int\int |u-1|^{z}\psi(u-1) f(x_1-t,x_2- u|t|^{\alpha}) \,du\, |t|^{\gamma}\,\frac{dt}{t}, $$ where $\psi$ is a bump function on $\mathbb R$ supported near the origin, $f\in{\cal C}^{\infty}_{\rm c} (\mathbb R^2)$, $z,\gamma\in\mathbb C$, $\mathop{\rm Re}\nolimits \gamma \ge 0$, $\alpha\in\mathbb R$, $\alpha\ge 2$.We determine the set of all (${{1}/{p}}, {{1}/{q}},\mathop{\rm Re}\nolimits z$) such that $S^{\gamma,\alpha}_{z}$ maps $L^p(\mathbb R^2)$ to $L^q (\mathbb R^2) $ boundedly. Our proof is based on product-type kernel arguments. More precisely, we prove that the kernel $K^{i\varrho,\alpha}_{-1+i\theta}$ is a product kernel on $\mathbb R^2$, adapted to the curve $t\mapsto |t|^{\alpha}$; as a consequence, we show that the operator $S^{i\varrho,\alpha}_{-1+i\theta}$, $\theta, \varrho \in \mathbb R$, is bounded on $L^p(\mathbb R^2)$ for $1 p \infty$.
DOI : 10.4064/sm184-2-5
Keywords: consider double analytic family fractional integrals gamma alpha along curve mapsto alpha introduced alpha grafakos defined gamma alpha frac mit gamma int int u psi u t alpha gamma frac where psi bump function mathbb supported near origin cal infty mathbb gamma mathbb mathop nolimits gamma alpha mathbb alpha determine set mathop nolimits gamma alpha maps mathbb mathbb boundedly proof based product type kernel arguments precisely prove kernel varrho alpha theta product kernel mathbb adapted curve mapsto alpha consequence operator varrho alpha theta theta varrho mathbb bounded mathbb infty

Valentina Casarino  1   ; Silvia Secco  1

1 Dipartimento di Matematica Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino, Italy
@article{10_4064_sm184_2_5,
     author = {Valentina Casarino and Silvia Secco},
     title = {$L^p$-$L^q$ boundedness of analytic families
of fractional integrals},
     journal = {Studia Mathematica},
     pages = {153--174},
     year = {2008},
     volume = {184},
     number = {2},
     doi = {10.4064/sm184-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm184-2-5/}
}
TY  - JOUR
AU  - Valentina Casarino
AU  - Silvia Secco
TI  - $L^p$-$L^q$ boundedness of analytic families
of fractional integrals
JO  - Studia Mathematica
PY  - 2008
SP  - 153
EP  - 174
VL  - 184
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm184-2-5/
DO  - 10.4064/sm184-2-5
LA  - en
ID  - 10_4064_sm184_2_5
ER  - 
%0 Journal Article
%A Valentina Casarino
%A Silvia Secco
%T $L^p$-$L^q$ boundedness of analytic families
of fractional integrals
%J Studia Mathematica
%D 2008
%P 153-174
%V 184
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm184-2-5/
%R 10.4064/sm184-2-5
%G en
%F 10_4064_sm184_2_5
Valentina Casarino; Silvia Secco. $L^p$-$L^q$ boundedness of analytic families
of fractional integrals. Studia Mathematica, Tome 184 (2008) no. 2, pp. 153-174. doi: 10.4064/sm184-2-5

Cité par Sources :