On the characterization of scalar type spectral operators
Studia Mathematica, Tome 184 (2008) no. 2, pp. 121-132 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

The paper is concerned with conditions guaranteeing that a bounded operator in a reflexive Banach space is a scalar type spectral operator. The cases where the spectrum of the operator lies on the real axis and on the unit circle are studied separately.
DOI : 10.4064/sm184-2-2
Keywords: paper concerned conditions guaranteeing bounded operator reflexive banach space scalar type spectral operator cases where spectrum operator lies real axis unit circle studied separately

P. A. Cojuhari  1   ; A. M. Gomilko  2

1 Department of Applied Mathematics AGH University of Science and Technology Al. Mickiewicza 30 30-059 Kraków, Poland
2 Department of Higher and Applied Mathematics National University of Trade and Economics Kiev, Ukraine
@article{10_4064_sm184_2_2,
     author = {P. A. Cojuhari and A. M. Gomilko},
     title = {On the characterization of scalar type spectral operators},
     journal = {Studia Mathematica},
     pages = {121--132},
     year = {2008},
     volume = {184},
     number = {2},
     doi = {10.4064/sm184-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm184-2-2/}
}
TY  - JOUR
AU  - P. A. Cojuhari
AU  - A. M. Gomilko
TI  - On the characterization of scalar type spectral operators
JO  - Studia Mathematica
PY  - 2008
SP  - 121
EP  - 132
VL  - 184
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm184-2-2/
DO  - 10.4064/sm184-2-2
LA  - en
ID  - 10_4064_sm184_2_2
ER  - 
%0 Journal Article
%A P. A. Cojuhari
%A A. M. Gomilko
%T On the characterization of scalar type spectral operators
%J Studia Mathematica
%D 2008
%P 121-132
%V 184
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm184-2-2/
%R 10.4064/sm184-2-2
%G en
%F 10_4064_sm184_2_2
P. A. Cojuhari; A. M. Gomilko. On the characterization of scalar type spectral operators. Studia Mathematica, Tome 184 (2008) no. 2, pp. 121-132. doi: 10.4064/sm184-2-2

Cité par Sources :