Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces
Studia Mathematica, Tome 184 (2008) no. 2, pp. 103-119 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We study the maximal regularity on different function spaces of the second order integro-differential equations with infinite delay $$(P)\quad\ u''(t)+\alpha {u}'(t)+\frac{d}{dt}\biggl(\int^{t}_{-\infty}b(t-s)u(s)\,ds\biggr) =Au(t)-\int^{t}_{-\infty}a(t-s)Au(s)\,ds+f(t) $$ $(0\leq t\leq2\pi)$ with periodic boundary conditions $ u(0)=u(2\pi), u'(0)=u'(2\pi)$, where $A$ is a closed operator in a Banach space $X$, $\alpha\in \mathbb C$, and $a, b\in L^1(\mathbb R_+)$. We use Fourier multipliers to characterize maximal regularity for ($P$). Using known results on Fourier multipliers, we find suitable conditions on the kernels $a$ and $b$ under which necessary and sufficient conditions are given for the problem ($P$) to have maximal regularity on $L^p(\mathbb T, X)$, periodic Besov spaces $B_{p,q}^s(\mathbb T, X)$ and periodic Triebel–Lizorkin spaces $F_{p,q}^s(\mathbb T, X)$
DOI : 10.4064/sm184-2-1
Keywords: study maximal regularity different function spaces second order integro differential equations infinite delay quad alpha frac biggl int infty t s biggr int infty t s leq leq periodic boundary conditions where closed operator banach space nbsp alpha mathbb mathbb fourier multipliers characterize maximal regularity using known results fourier multipliers suitable conditions kernels under which necessary sufficient conditions given problem have maximal regularity mathbb periodic besov spaces mathbb periodic triebel lizorkin spaces mathbb

Shangquan Bu  1   ; Yi Fang  1

1 Department of Mathematical Science University of Tsinghua Beijing 100084, China
@article{10_4064_sm184_2_1,
     author = {Shangquan Bu and Yi Fang},
     title = {Periodic solutions for second order integro-differential
equations with infinite delay in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {103--119},
     year = {2008},
     volume = {184},
     number = {2},
     doi = {10.4064/sm184-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm184-2-1/}
}
TY  - JOUR
AU  - Shangquan Bu
AU  - Yi Fang
TI  - Periodic solutions for second order integro-differential
equations with infinite delay in Banach spaces
JO  - Studia Mathematica
PY  - 2008
SP  - 103
EP  - 119
VL  - 184
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm184-2-1/
DO  - 10.4064/sm184-2-1
LA  - en
ID  - 10_4064_sm184_2_1
ER  - 
%0 Journal Article
%A Shangquan Bu
%A Yi Fang
%T Periodic solutions for second order integro-differential
equations with infinite delay in Banach spaces
%J Studia Mathematica
%D 2008
%P 103-119
%V 184
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm184-2-1/
%R 10.4064/sm184-2-1
%G en
%F 10_4064_sm184_2_1
Shangquan Bu; Yi Fang. Periodic solutions for second order integro-differential
equations with infinite delay in Banach spaces. Studia Mathematica, Tome 184 (2008) no. 2, pp. 103-119. doi: 10.4064/sm184-2-1

Cité par Sources :