Jordan isomorphisms and maps preserving spectra of certain operator products
Studia Mathematica, Tome 184 (2008) no. 1, pp. 31-47

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathcal{A}_1, \mathcal{A}_2$ be (not necessarily unital or closed) standard operator algebras on locally convex spaces $X_1, X_2$, respectively. For $k \ge 2$, consider different products $T_1* \cdots *T_k$ on elements in ${\cal A}_i$, which covers the usual product $T_1* \cdots *T_k = T_1\cdots T_k$ and the Jordan triple product $T_1*T_2 = T_2T_1T_2$. Let ${\mit\Phi} :\mathcal{A}_1\rightarrow\mathcal{A}_2$ be a (not necessarily linear) map satisfying $\sigma({\mit\Phi}(A_1)*\cdots *{\mit\Phi}(A_k)) =\sigma(A_1*\cdots *A_k)$ whenever any one of $A_i$'s has rank at most one. It is shown that if the range of ${\mit\Phi}$ contains all rank one and rank two operators then ${\mit\Phi}$ must be a Jordan isomorphism multiplied by a root of unity. Similar results for self-adjoint operators acting on Hilbert spaces are obtained.
DOI : 10.4064/sm184-1-2
Keywords: mathcal mathcal necessarily unital closed standard operator algebras locally convex spaces respectively consider different products * cdots *t elements cal which covers usual product * cdots *t cdots jordan triple product *t mit phi mathcal rightarrow mathcal necessarily linear map satisfying sigma mit phi * cdots * mit phi sigma * cdots *a whenever has rank shown range mit phi contains rank rank operators mit phi jordan isomorphism multiplied root unity similar results self adjoint operators acting hilbert spaces obtained

Jinchuan Hou 1 ; Chi-Kwong Li 2 ; Ngai-Ching Wong 3

1 Department of Mathematics Taiyuan University of Technology Taiyuan 030024, P.R. of China
2 Department of Mathematics The College of William & Mary Williamsburg, VA 13185, U.S.A.
3 Department of Applied Mathematics National Sun Yat-sen University and National Center for Theoretical Sciences Kaohsiung 80424, Taiwan and Department of Mathematics The Chinese University of Hong Kong Hong Kong
@article{10_4064_sm184_1_2,
     author = {Jinchuan Hou and Chi-Kwong Li and Ngai-Ching Wong},
     title = {Jordan isomorphisms and maps preserving spectra of certain
operator products},
     journal = {Studia Mathematica},
     pages = {31--47},
     publisher = {mathdoc},
     volume = {184},
     number = {1},
     year = {2008},
     doi = {10.4064/sm184-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm184-1-2/}
}
TY  - JOUR
AU  - Jinchuan Hou
AU  - Chi-Kwong Li
AU  - Ngai-Ching Wong
TI  - Jordan isomorphisms and maps preserving spectra of certain
operator products
JO  - Studia Mathematica
PY  - 2008
SP  - 31
EP  - 47
VL  - 184
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm184-1-2/
DO  - 10.4064/sm184-1-2
LA  - en
ID  - 10_4064_sm184_1_2
ER  - 
%0 Journal Article
%A Jinchuan Hou
%A Chi-Kwong Li
%A Ngai-Ching Wong
%T Jordan isomorphisms and maps preserving spectra of certain
operator products
%J Studia Mathematica
%D 2008
%P 31-47
%V 184
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm184-1-2/
%R 10.4064/sm184-1-2
%G en
%F 10_4064_sm184_1_2
Jinchuan Hou; Chi-Kwong Li; Ngai-Ching Wong. Jordan isomorphisms and maps preserving spectra of certain
operator products. Studia Mathematica, Tome 184 (2008) no. 1, pp. 31-47. doi: 10.4064/sm184-1-2

Cité par Sources :