Jordan isomorphisms and maps preserving spectra of certain
operator products
Studia Mathematica, Tome 184 (2008) no. 1, pp. 31-47
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathcal{A}_1, \mathcal{A}_2$ be (not necessarily unital or closed)
standard operator algebras on
locally convex spaces $X_1, X_2$, respectively.
For $k \ge 2$, consider different products
$T_1* \cdots *T_k$ on elements in ${\cal A}_i$,
which covers the usual product $T_1* \cdots *T_k = T_1\cdots T_k$
and the Jordan triple product $T_1*T_2 = T_2T_1T_2$.
Let
${\mit\Phi} :\mathcal{A}_1\rightarrow\mathcal{A}_2$ be a
(not necessarily linear) map satisfying
$\sigma({\mit\Phi}(A_1)*\cdots *{\mit\Phi}(A_k))
=\sigma(A_1*\cdots *A_k)$
whenever any one of $A_i$'s has rank at most one.
It is shown that if the range of ${\mit\Phi}$ contains all rank one and rank
two operators then ${\mit\Phi}$
must be a Jordan isomorphism
multiplied by a root of unity.
Similar results for self-adjoint operators acting on Hilbert
spaces are obtained.
Keywords:
mathcal mathcal necessarily unital closed standard operator algebras locally convex spaces respectively consider different products * cdots *t elements cal which covers usual product * cdots *t cdots jordan triple product *t mit phi mathcal rightarrow mathcal necessarily linear map satisfying sigma mit phi * cdots * mit phi sigma * cdots *a whenever has rank shown range mit phi contains rank rank operators mit phi jordan isomorphism multiplied root unity similar results self adjoint operators acting hilbert spaces obtained
Affiliations des auteurs :
Jinchuan Hou 1 ; Chi-Kwong Li 2 ; Ngai-Ching Wong 3
@article{10_4064_sm184_1_2,
author = {Jinchuan Hou and Chi-Kwong Li and Ngai-Ching Wong},
title = {Jordan isomorphisms and maps preserving spectra of certain
operator products},
journal = {Studia Mathematica},
pages = {31--47},
publisher = {mathdoc},
volume = {184},
number = {1},
year = {2008},
doi = {10.4064/sm184-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm184-1-2/}
}
TY - JOUR AU - Jinchuan Hou AU - Chi-Kwong Li AU - Ngai-Ching Wong TI - Jordan isomorphisms and maps preserving spectra of certain operator products JO - Studia Mathematica PY - 2008 SP - 31 EP - 47 VL - 184 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm184-1-2/ DO - 10.4064/sm184-1-2 LA - en ID - 10_4064_sm184_1_2 ER -
%0 Journal Article %A Jinchuan Hou %A Chi-Kwong Li %A Ngai-Ching Wong %T Jordan isomorphisms and maps preserving spectra of certain operator products %J Studia Mathematica %D 2008 %P 31-47 %V 184 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm184-1-2/ %R 10.4064/sm184-1-2 %G en %F 10_4064_sm184_1_2
Jinchuan Hou; Chi-Kwong Li; Ngai-Ching Wong. Jordan isomorphisms and maps preserving spectra of certain operator products. Studia Mathematica, Tome 184 (2008) no. 1, pp. 31-47. doi: 10.4064/sm184-1-2
Cité par Sources :