Right inverses for partial differential operators on Fourier hyperfunctions
Studia Mathematica, Tome 183 (2007) no. 3, pp. 273-299
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We characterize the partial differential operators $P(D)$ admitting a continuous linear
right inverse in the space of Fourier hyperfunctions by means of
a dual $( \overline{\Omega})$-type estimate valid for the bounded
holomorphic functions on the characteristic variety $V_P$ near
$\mathbb R^d$. The estimate can be transferred to plurisubharmonic
functions and is equivalent to a uniform (local)
Phragmén–Lindelöf-type condition.
Keywords:
characterize partial differential operators admitting continuous linear right inverse space fourier hyperfunctions means dual overline omega type estimate valid bounded holomorphic functions characteristic variety near mathbb estimate transferred plurisubharmonic functions equivalent uniform local phragm lindel f type condition
Affiliations des auteurs :
Michael Langenbruch 1
@article{10_4064_sm183_3_5,
author = {Michael Langenbruch},
title = {Right inverses for partial differential operators on {Fourier} hyperfunctions},
journal = {Studia Mathematica},
pages = {273--299},
publisher = {mathdoc},
volume = {183},
number = {3},
year = {2007},
doi = {10.4064/sm183-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm183-3-5/}
}
TY - JOUR AU - Michael Langenbruch TI - Right inverses for partial differential operators on Fourier hyperfunctions JO - Studia Mathematica PY - 2007 SP - 273 EP - 299 VL - 183 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm183-3-5/ DO - 10.4064/sm183-3-5 LA - en ID - 10_4064_sm183_3_5 ER -
Michael Langenbruch. Right inverses for partial differential operators on Fourier hyperfunctions. Studia Mathematica, Tome 183 (2007) no. 3, pp. 273-299. doi: 10.4064/sm183-3-5
Cité par Sources :