$\Psi $-pseudodifferential operators and estimates for
maximal oscillatory integrals
Studia Mathematica, Tome 183 (2007) no. 3, pp. 249-258
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We define a class of pseudodifferential operators with symbols $a(x,\xi )$ without any regularity assumptions in the $x$ variable and explore their $L^{p}$ boundedness properties. The results are applied to obtain estimates for certain maximal operators associated with oscillatory singular integrals.
Keywords:
define class pseudodifferential operators symbols without regularity assumptions variable explore their boundedness properties results applied obtain estimates certain maximal operators associated oscillatory singular integrals
Affiliations des auteurs :
Carlos E. Kenig 1 ; Wolfgang Staubach 2
@article{10_4064_sm183_3_3,
author = {Carlos E. Kenig and Wolfgang Staubach},
title = {$\Psi $-pseudodifferential operators and estimates for
maximal oscillatory integrals},
journal = {Studia Mathematica},
pages = {249--258},
publisher = {mathdoc},
volume = {183},
number = {3},
year = {2007},
doi = {10.4064/sm183-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm183-3-3/}
}
TY - JOUR AU - Carlos E. Kenig AU - Wolfgang Staubach TI - $\Psi $-pseudodifferential operators and estimates for maximal oscillatory integrals JO - Studia Mathematica PY - 2007 SP - 249 EP - 258 VL - 183 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm183-3-3/ DO - 10.4064/sm183-3-3 LA - en ID - 10_4064_sm183_3_3 ER -
%0 Journal Article %A Carlos E. Kenig %A Wolfgang Staubach %T $\Psi $-pseudodifferential operators and estimates for maximal oscillatory integrals %J Studia Mathematica %D 2007 %P 249-258 %V 183 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm183-3-3/ %R 10.4064/sm183-3-3 %G en %F 10_4064_sm183_3_3
Carlos E. Kenig; Wolfgang Staubach. $\Psi $-pseudodifferential operators and estimates for maximal oscillatory integrals. Studia Mathematica, Tome 183 (2007) no. 3, pp. 249-258. doi: 10.4064/sm183-3-3
Cité par Sources :