Poisson kernel and Green function of balls for complex hyperbolic Brownian motion
Studia Mathematica, Tome 183 (2007) no. 2, pp. 161-193

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The aim of this paper is to give a description of the Poisson kernel and the Green function of balls in the complex hyperbolic space. The description is in terms of the hypergeometric function and unitary spherical harmonics in $\mathbb{C}^n$.
DOI : 10.4064/sm183-2-5
Keywords: paper description poisson kernel green function balls complex hyperbolic space description terms hypergeometric function unitary spherical harmonics mathbb

Tomasz /Zak 1

1 Institute of Mathematics and Computer Science Wroc/law University of Technology Wybrze/ze Wyspia/nskiego 27 50-370 Wroc/law, Poland
@article{10_4064_sm183_2_5,
     author = {Tomasz /Zak},
     title = {Poisson kernel and {Green} function of balls
for complex hyperbolic {Brownian} motion},
     journal = {Studia Mathematica},
     pages = {161--193},
     publisher = {mathdoc},
     volume = {183},
     number = {2},
     year = {2007},
     doi = {10.4064/sm183-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm183-2-5/}
}
TY  - JOUR
AU  - Tomasz /Zak
TI  - Poisson kernel and Green function of balls
for complex hyperbolic Brownian motion
JO  - Studia Mathematica
PY  - 2007
SP  - 161
EP  - 193
VL  - 183
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm183-2-5/
DO  - 10.4064/sm183-2-5
LA  - en
ID  - 10_4064_sm183_2_5
ER  - 
%0 Journal Article
%A Tomasz /Zak
%T Poisson kernel and Green function of balls
for complex hyperbolic Brownian motion
%J Studia Mathematica
%D 2007
%P 161-193
%V 183
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm183-2-5/
%R 10.4064/sm183-2-5
%G en
%F 10_4064_sm183_2_5
Tomasz /Zak. Poisson kernel and Green function of balls
for complex hyperbolic Brownian motion. Studia Mathematica, Tome 183 (2007) no. 2, pp. 161-193. doi: 10.4064/sm183-2-5

Cité par Sources :