Variable exponent trace spaces
Studia Mathematica, Tome 183 (2007) no. 2, pp. 127-141

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The trace space of $W^{1,p(\cdot)}(\mathbb{R}^n\times [0,\infty))$ consists of those functions on $\mathbb{R}^n$ that can be extended to functions of $W^{1,p(\cdot)}(\mathbb{R}^n\times [0,\infty))$ (as in the fixed-exponent case). Under the assumption that $p$ is globally $\log$-Hölder continuous, we show that the trace space depends only on the values of $p$ on the boundary. In our main result we show how to define an intrinsic norm for the trace space in terms of a sharp-type operator.
DOI : 10.4064/sm183-2-3
Keywords: trace space cdot mathbb times infty consists those functions mathbb extended functions cdot mathbb times infty fixed exponent under assumption globally log h lder continuous trace space depends only values boundary main result define intrinsic norm trace space terms sharp type operator

Lars Diening 1 ; Peter Hästö 2

1 Section of Applied Mathematics Freiburg University Eckerstrasse 1 79104 Freiburg/Breisgau, Germany
2 Department of Mathematical Sciences P.O. Box 3000 FI-90014 University of Oulu, Finland
@article{10_4064_sm183_2_3,
     author = {Lars Diening and Peter H\"ast\"o},
     title = {Variable exponent trace spaces},
     journal = {Studia Mathematica},
     pages = {127--141},
     publisher = {mathdoc},
     volume = {183},
     number = {2},
     year = {2007},
     doi = {10.4064/sm183-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm183-2-3/}
}
TY  - JOUR
AU  - Lars Diening
AU  - Peter Hästö
TI  - Variable exponent trace spaces
JO  - Studia Mathematica
PY  - 2007
SP  - 127
EP  - 141
VL  - 183
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm183-2-3/
DO  - 10.4064/sm183-2-3
LA  - en
ID  - 10_4064_sm183_2_3
ER  - 
%0 Journal Article
%A Lars Diening
%A Peter Hästö
%T Variable exponent trace spaces
%J Studia Mathematica
%D 2007
%P 127-141
%V 183
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm183-2-3/
%R 10.4064/sm183-2-3
%G en
%F 10_4064_sm183_2_3
Lars Diening; Peter Hästö. Variable exponent trace spaces. Studia Mathematica, Tome 183 (2007) no. 2, pp. 127-141. doi: 10.4064/sm183-2-3

Cité par Sources :