Variable exponent trace spaces
Studia Mathematica, Tome 183 (2007) no. 2, pp. 127-141
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The trace space of $W^{1,p(\cdot)}(\mathbb{R}^n\times [0,\infty))$ consists
of those functions on $\mathbb{R}^n$ that can be extended to functions of
$W^{1,p(\cdot)}(\mathbb{R}^n\times [0,\infty))$ (as in the fixed-exponent
case). Under the assumption that $p$ is globally $\log$-Hölder
continuous, we show that the trace space depends only on the values
of $p$ on the boundary. In our main result we show how to define an
intrinsic norm for the trace space in terms of a sharp-type
operator.
Keywords:
trace space cdot mathbb times infty consists those functions mathbb extended functions cdot mathbb times infty fixed exponent under assumption globally log h lder continuous trace space depends only values boundary main result define intrinsic norm trace space terms sharp type operator
Affiliations des auteurs :
Lars Diening 1 ; Peter Hästö 2
@article{10_4064_sm183_2_3,
author = {Lars Diening and Peter H\"ast\"o},
title = {Variable exponent trace spaces},
journal = {Studia Mathematica},
pages = {127--141},
publisher = {mathdoc},
volume = {183},
number = {2},
year = {2007},
doi = {10.4064/sm183-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm183-2-3/}
}
Lars Diening; Peter Hästö. Variable exponent trace spaces. Studia Mathematica, Tome 183 (2007) no. 2, pp. 127-141. doi: 10.4064/sm183-2-3
Cité par Sources :