On the approximation by compositions of fixed
multivariate functions with univariate functions
Studia Mathematica, Tome 183 (2007) no. 2, pp. 117-126
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The approximation in the uniform norm of a continuous function
$f(\mathbf{x} )=f(x_{1},\ldots,x_{n})$ by continuous sums
$g_{1}( h_{1}(\mathbf{x} )) +g_{2}(
h_{2}(\mathbf{x})) $, where the functions $h_{1}$ and $h_{2}$
are fixed, is considered. A Chebyshev type criterion for best
approximation is established in terms of paths with respect to the
functions $h_{1}$ and $h_{2}$.
Keywords:
approximation uniform norm continuous function mathbf ldots continuous sums mathbf mathbf where functions fixed considered chebyshev type criterion best approximation established terms paths respect functions
Affiliations des auteurs :
Vugar E. Ismailov  1
@article{10_4064_sm183_2_2,
author = {Vugar E. Ismailov},
title = {On the approximation by compositions of fixed
multivariate functions with univariate functions},
journal = {Studia Mathematica},
pages = {117--126},
year = {2007},
volume = {183},
number = {2},
doi = {10.4064/sm183-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm183-2-2/}
}
TY - JOUR AU - Vugar E. Ismailov TI - On the approximation by compositions of fixed multivariate functions with univariate functions JO - Studia Mathematica PY - 2007 SP - 117 EP - 126 VL - 183 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm183-2-2/ DO - 10.4064/sm183-2-2 LA - en ID - 10_4064_sm183_2_2 ER -
Vugar E. Ismailov. On the approximation by compositions of fixed multivariate functions with univariate functions. Studia Mathematica, Tome 183 (2007) no. 2, pp. 117-126. doi: 10.4064/sm183-2-2
Cité par Sources :