Volume thresholds for Gaussian and spherical random polytopes and their duals
Studia Mathematica, Tome 183 (2007) no. 1, pp. 15-34

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $g$ be a Gaussian random vector in $\mathbb{R}^n$. Let $N=N(n)$ be a positive integer and let $K_N$ be the convex hull of $N$ independent copies of $g$. Fix $R>0$ and consider the ratio of volumes $V_N:={\mathbb E}\mathop{\rm vol}(K_N\cap RB_2^n)/\!\mathop{\rm vol}(RB_2^n)$. For a large range of $R=R(n)$, we establish a sharp threshold for $N$, above which $V_N\rightarrow 1$ as $n\rightarrow \infty$, and below which $V_N\rightarrow 0$ as $n\rightarrow \infty$. We also consider the case when $K_N$ is generated by independent random vectors distributed uniformly on the Euclidean sphere. In this case, similar threshold results are proved for both $R\in(0,1)$ and $R=1$. Lastly, we prove complementary results for polytopes generated by random facets.
DOI : 10.4064/sm183-1-2
Keywords: gaussian random vector mathbb positive integer convex hull independent copies fix consider ratio volumes mathbb mathop vol cap mathop vol large range establish sharp threshold above which rightarrow rightarrow infty below which rightarrow rightarrow infty consider generated independent random vectors distributed uniformly euclidean sphere similar threshold results proved lastly prove complementary results polytopes generated random facets

Peter Pivovarov 1

1 Department of Mathematical and Statistical Sciences University of Alberta Edmonton, Alberta, Canada T6G 2G1
@article{10_4064_sm183_1_2,
     author = {Peter Pivovarov},
     title = {Volume thresholds for {Gaussian} and spherical random polytopes
and their duals},
     journal = {Studia Mathematica},
     pages = {15--34},
     publisher = {mathdoc},
     volume = {183},
     number = {1},
     year = {2007},
     doi = {10.4064/sm183-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm183-1-2/}
}
TY  - JOUR
AU  - Peter Pivovarov
TI  - Volume thresholds for Gaussian and spherical random polytopes
and their duals
JO  - Studia Mathematica
PY  - 2007
SP  - 15
EP  - 34
VL  - 183
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm183-1-2/
DO  - 10.4064/sm183-1-2
LA  - en
ID  - 10_4064_sm183_1_2
ER  - 
%0 Journal Article
%A Peter Pivovarov
%T Volume thresholds for Gaussian and spherical random polytopes
and their duals
%J Studia Mathematica
%D 2007
%P 15-34
%V 183
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm183-1-2/
%R 10.4064/sm183-1-2
%G en
%F 10_4064_sm183_1_2
Peter Pivovarov. Volume thresholds for Gaussian and spherical random polytopes
and their duals. Studia Mathematica, Tome 183 (2007) no. 1, pp. 15-34. doi: 10.4064/sm183-1-2

Cité par Sources :