We consider real Banach spaces $X$ for which the quotient algebra
$\mathcal{L}(X)/\mathcal{I}n(X)$ is finite-dimensional, where $\mathcal{I}n(X)$ stands for the
ideal of inessential operators on $X$. We show that these spaces
admit a decomposition as a finite direct sum of indecomposable
subspaces $X_i$ for which $\mathcal{L}(X_i)/\mathcal{I}n(X_i)$ is isomorphic as a real
algebra to either the real numbers $\mathbb{R}$, the complex numbers
$\mathbb{C}$, or the quaternion numbers $\mathbb{H}$. Moreover, the set of
subspaces $X_i$ can be divided into subsets in such a way that if
$X_i$ and $X_j$ are in different subsets, then
$\mathcal{L}(X_i,X_j)=\mathcal{I}n(X_i,X_j)$; and if they are in the same subset, then
$X_i$ and $X_j$ are isomorphic, up to a finite-dimensional subspace.
Moreover, denoting by $\widehat X$ the complexification of $X$, we
show that $\mathcal{L}(X)/\mathcal{I}n(X)$ and $\mathcal{L}(\widehat X)/\mathcal{I}n(\widehat X)$ have
the same dimension.
Keywords:
consider real banach spaces which quotient algebra mathcal mathcal finite dimensional where mathcal stands ideal inessential operators these spaces admit decomposition finite direct sum indecomposable subspaces which mathcal mathcal i isomorphic real algebra either real numbers mathbb complex numbers mathbb quaternion numbers mathbb moreover set subspaces divided subsets different subsets mathcal j mathcal i subset isomorphic finite dimensional subspace moreover denoting widehat complexification mathcal mathcal mathcal widehat mathcal widehat have dimension
Affiliations des auteurs :
Manuel González 
1
;
José M. Herrera 
1
1
Departamento de Matemáticas Universidad de Cantabria E-39071 Santander, Spain
@article{10_4064_sm183_1_1,
author = {Manuel Gonz\'alez and Jos\'e M. Herrera},
title = {Decompositions for real {Banach} spaces with small spaces of operators},
journal = {Studia Mathematica},
pages = {1--14},
year = {2007},
volume = {183},
number = {1},
doi = {10.4064/sm183-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm183-1-1/}
}
TY - JOUR
AU - Manuel González
AU - José M. Herrera
TI - Decompositions for real Banach spaces with small spaces of operators
JO - Studia Mathematica
PY - 2007
SP - 1
EP - 14
VL - 183
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm183-1-1/
DO - 10.4064/sm183-1-1
LA - en
ID - 10_4064_sm183_1_1
ER -
%0 Journal Article
%A Manuel González
%A José M. Herrera
%T Decompositions for real Banach spaces with small spaces of operators
%J Studia Mathematica
%D 2007
%P 1-14
%V 183
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm183-1-1/
%R 10.4064/sm183-1-1
%G en
%F 10_4064_sm183_1_1
Manuel González; José M. Herrera. Decompositions for real Banach spaces with small spaces of operators. Studia Mathematica, Tome 183 (2007) no. 1, pp. 1-14. doi: 10.4064/sm183-1-1