Decompositions for real Banach spaces with small spaces of operators
Studia Mathematica, Tome 183 (2007) no. 1, pp. 1-14 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We consider real Banach spaces $X$ for which the quotient algebra $\mathcal{L}(X)/\mathcal{I}n(X)$ is finite-dimensional, where $\mathcal{I}n(X)$ stands for the ideal of inessential operators on $X$. We show that these spaces admit a decomposition as a finite direct sum of indecomposable subspaces $X_i$ for which $\mathcal{L}(X_i)/\mathcal{I}n(X_i)$ is isomorphic as a real algebra to either the real numbers $\mathbb{R}$, the complex numbers $\mathbb{C}$, or the quaternion numbers $\mathbb{H}$. Moreover, the set of subspaces $X_i$ can be divided into subsets in such a way that if $X_i$ and $X_j$ are in different subsets, then $\mathcal{L}(X_i,X_j)=\mathcal{I}n(X_i,X_j)$; and if they are in the same subset, then $X_i$ and $X_j$ are isomorphic, up to a finite-dimensional subspace. Moreover, denoting by $\widehat X$ the complexification of $X$, we show that $\mathcal{L}(X)/\mathcal{I}n(X)$ and $\mathcal{L}(\widehat X)/\mathcal{I}n(\widehat X)$ have the same dimension.
DOI : 10.4064/sm183-1-1
Keywords: consider real banach spaces which quotient algebra mathcal mathcal finite dimensional where mathcal stands ideal inessential operators these spaces admit decomposition finite direct sum indecomposable subspaces which mathcal mathcal i isomorphic real algebra either real numbers mathbb complex numbers mathbb quaternion numbers mathbb moreover set subspaces divided subsets different subsets mathcal j mathcal i subset isomorphic finite dimensional subspace moreover denoting widehat complexification mathcal mathcal mathcal widehat mathcal widehat have dimension

Manuel González  1   ; José M. Herrera  1

1 Departamento de Matemáticas Universidad de Cantabria E-39071 Santander, Spain
@article{10_4064_sm183_1_1,
     author = {Manuel Gonz\'alez and Jos\'e M. Herrera},
     title = {Decompositions for real {Banach} spaces with small spaces of operators},
     journal = {Studia Mathematica},
     pages = {1--14},
     year = {2007},
     volume = {183},
     number = {1},
     doi = {10.4064/sm183-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm183-1-1/}
}
TY  - JOUR
AU  - Manuel González
AU  - José M. Herrera
TI  - Decompositions for real Banach spaces with small spaces of operators
JO  - Studia Mathematica
PY  - 2007
SP  - 1
EP  - 14
VL  - 183
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm183-1-1/
DO  - 10.4064/sm183-1-1
LA  - en
ID  - 10_4064_sm183_1_1
ER  - 
%0 Journal Article
%A Manuel González
%A José M. Herrera
%T Decompositions for real Banach spaces with small spaces of operators
%J Studia Mathematica
%D 2007
%P 1-14
%V 183
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm183-1-1/
%R 10.4064/sm183-1-1
%G en
%F 10_4064_sm183_1_1
Manuel González; José M. Herrera. Decompositions for real Banach spaces with small spaces of operators. Studia Mathematica, Tome 183 (2007) no. 1, pp. 1-14. doi: 10.4064/sm183-1-1

Cité par Sources :