We deal with the Hardy–Lorentz spaces
$H^{p,q}({\mathbb R}^n)$ where $0 p\le 1$, $0 q\le \infty$. We discuss the
atomic decomposition of the elements in these spaces, their
interpolation properties, and the behavior of
singular integrals and other operators acting on them.
Keywords:
hardy lorentz spaces mathbb where infty discuss atomic decomposition elements these spaces their interpolation properties behavior singular integrals other operators acting
Affiliations des auteurs :
Wael Abu-Shammala 
1
;
Alberto Torchinsky 
1
1
Department of Mathematics Indiana University Bloomington, IN 47405, U.S.A.
@article{10_4064_sm182_3_7,
author = {Wael Abu-Shammala and Alberto Torchinsky},
title = {The {Hardy{\textendash}Lorentz} spaces $H^{p,q}({\mathbb R}^n)$},
journal = {Studia Mathematica},
pages = {283--294},
year = {2007},
volume = {182},
number = {3},
doi = {10.4064/sm182-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-7/}
}
TY - JOUR
AU - Wael Abu-Shammala
AU - Alberto Torchinsky
TI - The Hardy–Lorentz spaces $H^{p,q}({\mathbb R}^n)$
JO - Studia Mathematica
PY - 2007
SP - 283
EP - 294
VL - 182
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-7/
DO - 10.4064/sm182-3-7
LA - en
ID - 10_4064_sm182_3_7
ER -
%0 Journal Article
%A Wael Abu-Shammala
%A Alberto Torchinsky
%T The Hardy–Lorentz spaces $H^{p,q}({\mathbb R}^n)$
%J Studia Mathematica
%D 2007
%P 283-294
%V 182
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-7/
%R 10.4064/sm182-3-7
%G en
%F 10_4064_sm182_3_7
Wael Abu-Shammala; Alberto Torchinsky. The Hardy–Lorentz spaces $H^{p,q}({\mathbb R}^n)$. Studia Mathematica, Tome 182 (2007) no. 3, pp. 283-294. doi: 10.4064/sm182-3-7