A remark on the topological entropies of covers and partitions
Studia Mathematica, Tome 182 (2007) no. 3, pp. 273-281

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study if the combinatorial entropy of a finite cover can be computed using finite partitions finer than the cover. This relates to an unsolved question in [R] for open covers. We explicitly compute the topological entropy of a fixed clopen cover showing that it is smaller than the infimum of the topological entropy of all finer clopen partitions.
DOI : 10.4064/sm182-3-6
Keywords: study combinatorial entropy finite cover computed using finite partitions finer cover relates unsolved question covers explicitly compute topological entropy fixed clopen cover showing smaller infimum topological entropy finer clopen partitions

Pierre-Paul Romagnoli 1

1 Departamento de Matemáticas Universidad Andrés Bello Sazie 2315 Santiago, Chile
@article{10_4064_sm182_3_6,
     author = {Pierre-Paul Romagnoli},
     title = {A remark on the topological entropies
 of covers and partitions},
     journal = {Studia Mathematica},
     pages = {273--281},
     publisher = {mathdoc},
     volume = {182},
     number = {3},
     year = {2007},
     doi = {10.4064/sm182-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-6/}
}
TY  - JOUR
AU  - Pierre-Paul Romagnoli
TI  - A remark on the topological entropies
 of covers and partitions
JO  - Studia Mathematica
PY  - 2007
SP  - 273
EP  - 281
VL  - 182
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-6/
DO  - 10.4064/sm182-3-6
LA  - en
ID  - 10_4064_sm182_3_6
ER  - 
%0 Journal Article
%A Pierre-Paul Romagnoli
%T A remark on the topological entropies
 of covers and partitions
%J Studia Mathematica
%D 2007
%P 273-281
%V 182
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-6/
%R 10.4064/sm182-3-6
%G en
%F 10_4064_sm182_3_6
Pierre-Paul Romagnoli. A remark on the topological entropies
 of covers and partitions. Studia Mathematica, Tome 182 (2007) no. 3, pp. 273-281. doi: 10.4064/sm182-3-6

Cité par Sources :