A remark on the topological entropies
of covers and partitions
Studia Mathematica, Tome 182 (2007) no. 3, pp. 273-281
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study if the combinatorial entropy of a finite cover can be computed using finite partitions finer than the cover. This relates to an unsolved question in [R] for open covers. We explicitly compute the topological entropy of a fixed clopen cover showing that it is smaller than the infimum of the topological entropy of all finer clopen partitions.
Keywords:
study combinatorial entropy finite cover computed using finite partitions finer cover relates unsolved question covers explicitly compute topological entropy fixed clopen cover showing smaller infimum topological entropy finer clopen partitions
Affiliations des auteurs :
Pierre-Paul Romagnoli 1
@article{10_4064_sm182_3_6,
author = {Pierre-Paul Romagnoli},
title = {A remark on the topological entropies
of covers and partitions},
journal = {Studia Mathematica},
pages = {273--281},
publisher = {mathdoc},
volume = {182},
number = {3},
year = {2007},
doi = {10.4064/sm182-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-6/}
}
TY - JOUR AU - Pierre-Paul Romagnoli TI - A remark on the topological entropies of covers and partitions JO - Studia Mathematica PY - 2007 SP - 273 EP - 281 VL - 182 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-6/ DO - 10.4064/sm182-3-6 LA - en ID - 10_4064_sm182_3_6 ER -
Pierre-Paul Romagnoli. A remark on the topological entropies of covers and partitions. Studia Mathematica, Tome 182 (2007) no. 3, pp. 273-281. doi: 10.4064/sm182-3-6
Cité par Sources :