On the norm of a projection onto the space of compact operators
Studia Mathematica, Tome 182 (2007) no. 3, pp. 263-272
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ and $Y$ be Banach spaces and let $\mathcal{A}(X,Y)$ be a closed
subspace of $\mathcal{L}(X,Y)$, the Banach space of bounded linear
operators from $X$ to $Y$, containing the subspace
$\mathcal{K}(X,Y)$ of compact operators. We prove that if $Y$ has
the metric compact approximation property and a certain geometric
property $M^*(a,B,c)$, where $a,c \ge 0$ and $B$ is a compact set of
scalars (Kalton's property $(M^*) = M^*(1, \{-1\}, 1)$), and if
$\mathcal{A}(X,Y) \ne \mathcal{K}(X,Y)$, then there is no
projection from $\mathcal{A}(X,Y)$ onto $\mathcal{K}(X,Y)$ with
norm less than $\max |B| + c$. Since, for given
$\lambda$ with $1 \lambda 2$, every $Y$ with separable dual
can be equivalently renormed to satisfy $M^*(a,B,c)$ with $\max
|B| + c = \lambda$, this implies and improves a theorem due to Saphar.
Keywords:
banach spaces mathcal closed subspace mathcal banach space bounded linear operators containing subspace mathcal compact operators prove has metric compact approximation property certain geometric property * where compact set scalars kaltons property * * mathcal mathcal there projection mathcal mathcal norm max since given lambda lambda every separable dual equivalently renormed satisfy * max lambda implies improves theorem due saphar
Affiliations des auteurs :
Joosep Lippus 1 ; Eve Oja 1
@article{10_4064_sm182_3_5,
author = {Joosep Lippus and Eve Oja},
title = {On the norm of a projection onto the space of compact operators},
journal = {Studia Mathematica},
pages = {263--272},
publisher = {mathdoc},
volume = {182},
number = {3},
year = {2007},
doi = {10.4064/sm182-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-5/}
}
TY - JOUR AU - Joosep Lippus AU - Eve Oja TI - On the norm of a projection onto the space of compact operators JO - Studia Mathematica PY - 2007 SP - 263 EP - 272 VL - 182 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-5/ DO - 10.4064/sm182-3-5 LA - en ID - 10_4064_sm182_3_5 ER -
Joosep Lippus; Eve Oja. On the norm of a projection onto the space of compact operators. Studia Mathematica, Tome 182 (2007) no. 3, pp. 263-272. doi: 10.4064/sm182-3-5
Cité par Sources :