On the norm of a projection onto the space of compact operators
Studia Mathematica, Tome 182 (2007) no. 3, pp. 263-272

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ and $Y$ be Banach spaces and let $\mathcal{A}(X,Y)$ be a closed subspace of $\mathcal{L}(X,Y)$, the Banach space of bounded linear operators from $X$ to $Y$, containing the subspace $\mathcal{K}(X,Y)$ of compact operators. We prove that if $Y$ has the metric compact approximation property and a certain geometric property $M^*(a,B,c)$, where $a,c \ge 0$ and $B$ is a compact set of scalars (Kalton's property $(M^*) = M^*(1, \{-1\}, 1)$), and if $\mathcal{A}(X,Y) \ne \mathcal{K}(X,Y)$, then there is no projection from $\mathcal{A}(X,Y)$ onto $\mathcal{K}(X,Y)$ with norm less than $\max |B| + c$. Since, for given $\lambda$ with $1 \lambda 2$, every $Y$ with separable dual can be equivalently renormed to satisfy $M^*(a,B,c)$ with $\max |B| + c = \lambda$, this implies and improves a theorem due to Saphar.
DOI : 10.4064/sm182-3-5
Keywords: banach spaces mathcal closed subspace mathcal banach space bounded linear operators containing subspace mathcal compact operators prove has metric compact approximation property certain geometric property * where compact set scalars kaltons property * * mathcal mathcal there projection mathcal mathcal norm max since given lambda lambda every separable dual equivalently renormed satisfy * max lambda implies improves theorem due saphar

Joosep Lippus 1 ; Eve Oja 1

1 Institute of Pure Mathematics University of Tartu J. Liivi 2 50409 Tartu, Estonia
@article{10_4064_sm182_3_5,
     author = {Joosep Lippus and Eve Oja},
     title = {On the norm of a projection onto the space of compact operators},
     journal = {Studia Mathematica},
     pages = {263--272},
     publisher = {mathdoc},
     volume = {182},
     number = {3},
     year = {2007},
     doi = {10.4064/sm182-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-5/}
}
TY  - JOUR
AU  - Joosep Lippus
AU  - Eve Oja
TI  - On the norm of a projection onto the space of compact operators
JO  - Studia Mathematica
PY  - 2007
SP  - 263
EP  - 272
VL  - 182
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-5/
DO  - 10.4064/sm182-3-5
LA  - en
ID  - 10_4064_sm182_3_5
ER  - 
%0 Journal Article
%A Joosep Lippus
%A Eve Oja
%T On the norm of a projection onto the space of compact operators
%J Studia Mathematica
%D 2007
%P 263-272
%V 182
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-5/
%R 10.4064/sm182-3-5
%G en
%F 10_4064_sm182_3_5
Joosep Lippus; Eve Oja. On the norm of a projection onto the space of compact operators. Studia Mathematica, Tome 182 (2007) no. 3, pp. 263-272. doi: 10.4064/sm182-3-5

Cité par Sources :