1Department of Mathematics Hangzhou Normal University Hangzhou, Zhejiang 310036, China and Department of Mathematics, Statistics and Computer Science St. Francis Xavier University Antigonish, Nova Scotia Canada, B2G 2W5 2Department of Mathematics, Statistics and Computer Science St. Francis Xavier University Antigonish, Nova Scotia Canada, B2G 2W5 3Institute of Mathematics Zhejiang Sci-Tech University Xiasha Economic Development Area Hangzhou, Zhejiang 310018, China and Department of Mathematics, Statistics and Computer Science St. Francis Xavier University Antigonish, Nova Scotia Canada, B2G 2W5
Studia Mathematica, Tome 182 (2007) no. 3, pp. 215-226
We first give a necessary and sufficient condition for $x^{-\gamma }\phi
( x) \in L^{p}$, $1 p \infty $, $1/p-1 \gamma 1/p,$ where $\phi
( x) $ is the sum of either $\sum_{k=1}^{\infty }a_{k}\cos
kx$ or $\sum_{k=1}^{\infty }b_{k}\sin kx$,
under the condition that $\{\lambda _{n}\}$
(where $\lambda _{n}$ is $a_{n}$ or $b_{n}$ respectively)
belongs to
the class of so called Mean Value Bounded Variation Sequences (MVBVS). Then
we discuss the relations among the Fourier coefficients $\lambda _{n}$ and
the sum function $\phi (x)$ under the condition that $\{\lambda _{n}\}\in $
MVBVS, and deduce a sharp estimate for the weighted modulus of continuity of
$\phi (x)$ in $L^{p}$ norm.
Keywords:
first necessary sufficient condition gamma phi infty p gamma where phi sum either sum infty cos sum infty sin under condition lambda where lambda respectively belongs class called mean value bounded variation sequences mvbvs discuss relations among fourier coefficients lambda sum function phi under condition lambda mvbvs deduce sharp estimate weighted modulus continuity phi norm
1
Department of Mathematics Hangzhou Normal University Hangzhou, Zhejiang 310036, China and Department of Mathematics, Statistics and Computer Science St. Francis Xavier University Antigonish, Nova Scotia Canada, B2G 2W5
2
Department of Mathematics, Statistics and Computer Science St. Francis Xavier University Antigonish, Nova Scotia Canada, B2G 2W5
3
Institute of Mathematics Zhejiang Sci-Tech University Xiasha Economic Development Area Hangzhou, Zhejiang 310018, China and Department of Mathematics, Statistics and Computer Science St. Francis Xavier University Antigonish, Nova Scotia Canada, B2G 2W5
@article{10_4064_sm182_3_3,
author = {Dansheng Yu and Ping Zhou and Songping Zhou},
title = {On $L^p$ integrability and convergence of trigonometric series},
journal = {Studia Mathematica},
pages = {215--226},
year = {2007},
volume = {182},
number = {3},
doi = {10.4064/sm182-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-3/}
}
TY - JOUR
AU - Dansheng Yu
AU - Ping Zhou
AU - Songping Zhou
TI - On $L^p$ integrability and convergence of trigonometric series
JO - Studia Mathematica
PY - 2007
SP - 215
EP - 226
VL - 182
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-3/
DO - 10.4064/sm182-3-3
LA - en
ID - 10_4064_sm182_3_3
ER -
%0 Journal Article
%A Dansheng Yu
%A Ping Zhou
%A Songping Zhou
%T On $L^p$ integrability and convergence of trigonometric series
%J Studia Mathematica
%D 2007
%P 215-226
%V 182
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-3/
%R 10.4064/sm182-3-3
%G en
%F 10_4064_sm182_3_3
Dansheng Yu; Ping Zhou; Songping Zhou. On $L^p$ integrability and convergence of trigonometric series. Studia Mathematica, Tome 182 (2007) no. 3, pp. 215-226. doi: 10.4064/sm182-3-3