Weak amenability of the second dual of a Banach algebra
Studia Mathematica, Tome 182 (2007) no. 3, p. 205–213

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is known that a Banach algebra $\mathcal A$ inherits amenability from its second Banach dual ${\mathcal A}^{**}$. No example is yet known whether this fails if one considers the weak amenability instead, but the property is known to hold for the group algebra $L^1(G)$, the Fourier algebra $A(G)$ when $G$ is amenable, the Banach algebras $\mathcal A$ which are left ideals in $\mathcal A^{**}$, the dual Banach algebras, and the Banach algebras $\mathcal A$ which are Arens regular and have every derivation from $\mathcal A$ into $\mathcal A^*$ weakly compact. In this paper, we extend this class of algebras to the Banach algebras for which the second adjoint of each derivation $D:\mathcal A\to \mathcal A^{*}$ satisfies $D''(\mathcal A^{**})\subseteq \mathop{\rm WAP}\nolimits(\mathcal A)$, the Banach algebras $\mathcal A$ which are right ideals in $\mathcal A^{**}$ and satisfy $\mathcal A^{**}\mathcal A=\mathcal A^{**}$, and to the Figà-Talamanca–Herz algebra $A_p(G)$ for $G$ amenable. We also provide a short proof of the interesting recent criterion on when the second adjoint of a derivation is again a derivation.
DOI : 10.4064/sm182-3-2
Keywords: known banach algebra mathcal inherits amenability its second banach dual mathcal ** example yet known whether fails considers weak amenability instead property known group algebra fourier algebra amenable banach algebras mathcal which ideals mathcal ** dual banach algebras banach algebras mathcal which arens regular have every derivation mathcal mathcal * weakly compact paper extend class algebras banach algebras which second adjoint each derivation mathcal mathcal * satisfies mathcal ** subseteq mathop wap nolimits mathcal banach algebras mathcal which right ideals mathcal ** satisfy mathcal ** mathcal mathcal ** fig talamanca herz algebra amenable provide short proof interesting recent criterion second adjoint derivation again derivation

M. Eshaghi Gordji 1 ; M. Filali 2

1 Department of Mathematics University of Semnan Semnan, Iran
2 Department of Mathematical Sciences University of Oulu Oulu 90014, Finland
@article{10_4064_sm182_3_2,
     author = {M. Eshaghi Gordji and M. Filali},
     title = {Weak amenability of the second dual of a {Banach} algebra},
     journal = {Studia Mathematica},
     pages = {205–213--205–213},
     publisher = {mathdoc},
     volume = {182},
     number = {3},
     year = {2007},
     doi = {10.4064/sm182-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-2/}
}
TY  - JOUR
AU  - M. Eshaghi Gordji
AU  - M. Filali
TI  - Weak amenability of the second dual of a Banach algebra
JO  - Studia Mathematica
PY  - 2007
SP  - 205–213
EP  - 205–213
VL  - 182
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-2/
DO  - 10.4064/sm182-3-2
LA  - en
ID  - 10_4064_sm182_3_2
ER  - 
%0 Journal Article
%A M. Eshaghi Gordji
%A M. Filali
%T Weak amenability of the second dual of a Banach algebra
%J Studia Mathematica
%D 2007
%P 205–213-205–213
%V 182
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-2/
%R 10.4064/sm182-3-2
%G en
%F 10_4064_sm182_3_2
M. Eshaghi Gordji; M. Filali. Weak amenability of the second dual of a Banach algebra. Studia Mathematica, Tome 182 (2007) no. 3, p. 205–213. doi: 10.4064/sm182-3-2

Cité par Sources :