Weak amenability of the second dual of a Banach algebra
Studia Mathematica, Tome 182 (2007) no. 3, p. 205–213 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

It is known that a Banach algebra $\mathcal A$ inherits amenability from its second Banach dual ${\mathcal A}^{**}$. No example is yet known whether this fails if one considers the weak amenability instead, but the property is known to hold for the group algebra $L^1(G)$, the Fourier algebra $A(G)$ when $G$ is amenable, the Banach algebras $\mathcal A$ which are left ideals in $\mathcal A^{**}$, the dual Banach algebras, and the Banach algebras $\mathcal A$ which are Arens regular and have every derivation from $\mathcal A$ into $\mathcal A^*$ weakly compact. In this paper, we extend this class of algebras to the Banach algebras for which the second adjoint of each derivation $D:\mathcal A\to \mathcal A^{*}$ satisfies $D''(\mathcal A^{**})\subseteq \mathop{\rm WAP}\nolimits(\mathcal A)$, the Banach algebras $\mathcal A$ which are right ideals in $\mathcal A^{**}$ and satisfy $\mathcal A^{**}\mathcal A=\mathcal A^{**}$, and to the Figà-Talamanca–Herz algebra $A_p(G)$ for $G$ amenable. We also provide a short proof of the interesting recent criterion on when the second adjoint of a derivation is again a derivation.
DOI : 10.4064/sm182-3-2
Keywords: known banach algebra mathcal inherits amenability its second banach dual mathcal ** example yet known whether fails considers weak amenability instead property known group algebra fourier algebra amenable banach algebras mathcal which ideals mathcal ** dual banach algebras banach algebras mathcal which arens regular have every derivation mathcal mathcal * weakly compact paper extend class algebras banach algebras which second adjoint each derivation mathcal mathcal * satisfies mathcal ** subseteq mathop wap nolimits mathcal banach algebras mathcal which right ideals mathcal ** satisfy mathcal ** mathcal mathcal ** fig talamanca herz algebra amenable provide short proof interesting recent criterion second adjoint derivation again derivation

M. Eshaghi Gordji  1   ; M. Filali  2

1 Department of Mathematics University of Semnan Semnan, Iran
2 Department of Mathematical Sciences University of Oulu Oulu 90014, Finland
@article{10_4064_sm182_3_2,
     author = {M. Eshaghi Gordji and M. Filali},
     title = {Weak amenability of the second dual of a {Banach} algebra},
     journal = {Studia Mathematica},
     pages = {205–213--205–213},
     year = {2007},
     volume = {182},
     number = {3},
     doi = {10.4064/sm182-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-2/}
}
TY  - JOUR
AU  - M. Eshaghi Gordji
AU  - M. Filali
TI  - Weak amenability of the second dual of a Banach algebra
JO  - Studia Mathematica
PY  - 2007
SP  - 205–213
EP  - 205–213
VL  - 182
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-2/
DO  - 10.4064/sm182-3-2
LA  - en
ID  - 10_4064_sm182_3_2
ER  - 
%0 Journal Article
%A M. Eshaghi Gordji
%A M. Filali
%T Weak amenability of the second dual of a Banach algebra
%J Studia Mathematica
%D 2007
%P 205–213-205–213
%V 182
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-2/
%R 10.4064/sm182-3-2
%G en
%F 10_4064_sm182_3_2
M. Eshaghi Gordji; M. Filali. Weak amenability of the second dual of a Banach algebra. Studia Mathematica, Tome 182 (2007) no. 3, p. 205–213. doi: 10.4064/sm182-3-2

Cité par Sources :