A characterization of the invertible measures
Studia Mathematica, Tome 182 (2007) no. 3, pp. 197-203
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $ G$ be a locally compact
abelian group and $ M(G)$ its measure algebra. Two
measures $\mu $ and $\lambda $ are said to be equivalent
if there exists an invertible measure $\varpi $ such that
$\varpi \ast \mu =\lambda $. The main result of
this note is the following: A measure $\mu $ is invertible
iff $|\widehat{\mu }\vert \geq \varepsilon $
on $\widehat{G}$ for some $\varepsilon >0$
and $\mu $ is equivalent to a measure $\lambda $ of the
form $\lambda =a +\theta $, where $a\in
L^{1}(G)$ and $\theta \in M(G)$ is an idempotent measure.
Keywords:
locally compact abelian group its measure algebra measures lambda said equivalent there exists invertible measure varpi varpi ast lambda main result note following measure invertible widehat vert geq varepsilon widehat varepsilon equivalent measure lambda form lambda theta where theta idempotent measure
Affiliations des auteurs :
A. Ülger 1
@article{10_4064_sm182_3_1,
author = {A. \"Ulger},
title = {A characterization of the invertible measures},
journal = {Studia Mathematica},
pages = {197--203},
publisher = {mathdoc},
volume = {182},
number = {3},
year = {2007},
doi = {10.4064/sm182-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-1/}
}
A. Ülger. A characterization of the invertible measures. Studia Mathematica, Tome 182 (2007) no. 3, pp. 197-203. doi: 10.4064/sm182-3-1
Cité par Sources :