A characterization of the invertible measures
Studia Mathematica, Tome 182 (2007) no. 3, pp. 197-203

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $ G$ be a locally compact abelian group and $ M(G)$ its measure algebra. Two measures $\mu $ and $\lambda $ are said to be equivalent if there exists an invertible measure $\varpi $ such that $\varpi \ast \mu =\lambda $. The main result of this note is the following: A measure $\mu $ is invertible iff $|\widehat{\mu }\vert \geq \varepsilon $ on $\widehat{G}$ for some $\varepsilon >0$ and $\mu $ is equivalent to a measure $\lambda $ of the form $\lambda =a +\theta $, where $a\in L^{1}(G)$ and $\theta \in M(G)$ is an idempotent measure.
DOI : 10.4064/sm182-3-1
Keywords: locally compact abelian group its measure algebra measures lambda said equivalent there exists invertible measure varpi varpi ast lambda main result note following measure invertible widehat vert geq varepsilon widehat varepsilon equivalent measure lambda form lambda theta where theta idempotent measure

A. Ülger 1

1 Department of Mathematics Koc University Fener Yolu, 34450, Sariyer-Istanbul, Turkey
@article{10_4064_sm182_3_1,
     author = {A. \"Ulger},
     title = {A characterization of the invertible measures},
     journal = {Studia Mathematica},
     pages = {197--203},
     publisher = {mathdoc},
     volume = {182},
     number = {3},
     year = {2007},
     doi = {10.4064/sm182-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-1/}
}
TY  - JOUR
AU  - A. Ülger
TI  - A characterization of the invertible measures
JO  - Studia Mathematica
PY  - 2007
SP  - 197
EP  - 203
VL  - 182
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-1/
DO  - 10.4064/sm182-3-1
LA  - en
ID  - 10_4064_sm182_3_1
ER  - 
%0 Journal Article
%A A. Ülger
%T A characterization of the invertible measures
%J Studia Mathematica
%D 2007
%P 197-203
%V 182
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm182-3-1/
%R 10.4064/sm182-3-1
%G en
%F 10_4064_sm182_3_1
A. Ülger. A characterization of the invertible measures. Studia Mathematica, Tome 182 (2007) no. 3, pp. 197-203. doi: 10.4064/sm182-3-1

Cité par Sources :