If $X$ is a Banach space and $C$ a convex subset of $X^*$,
we investigate whether
the distance $\hat d({{\overline {\rm {co}}}}^{w^*}(K),C):=\sup
\{\inf\{\|k-c\|:c\in C\}:k\in \overline {\rm {co}} ^{w^*}(K)\}$ from $\overline {\rm {co}}
^{w^*}(K)$ to $C$ is $M$-controlled by the distance $\hat d(K,C)$
(that is, if $\hat d({{\overline {\rm {co}}}}^{w^*}(K),C)\leq M \hat d(K,C)$ for
some $1\leq M\infty $), when $K$ is any weak$^*$-compact subset
of $X^*$. We prove, for example, that: (i) $C$ has 3-control if
$C$ contains no copy of the basis of $\ell _1( c )$; (ii) $C$
has 1-control when $C\subset Y\subset X^*$ and $Y$ is a subspace
with weak$^*$-angelic closed dual unit ball $B(Y^*)$; (iii) if
$C$ is a convex subset of $X$ and $X$ is considered canonically
embedded into its bidual $X^{**}$, then $C$ has 5-control inside
$X^{**}$, in general, and 2-control when $K\cap C$ is
weak$^*$-dense in $C$.
Keywords:
banach space convex subset nbsp * investigate whether distance hat overline * sup inf k c overline * overline * m controlled distance hat hat overline * leq hat leq infty weak * compact subset * prove example has control contains copy basis ell has control subset subset * subspace weak * angelic closed dual unit ball * iii convex subset considered canonically embedded its bidual ** has control inside ** general control cap weak * dense
Affiliations des auteurs :
Antonio S. Granero 
1
;
Marcos Sánchez 
1
1
Departamento de Análisis Matemático Facultad de Matemáticas Universidad Complutense de Madrid 28040 Madrid, Spain
@article{10_4064_sm182_2_5,
author = {Antonio S. Granero and Marcos S\'anchez},
title = {Distances to convex sets},
journal = {Studia Mathematica},
pages = {165--181},
year = {2007},
volume = {182},
number = {2},
doi = {10.4064/sm182-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-2-5/}
}
TY - JOUR
AU - Antonio S. Granero
AU - Marcos Sánchez
TI - Distances to convex sets
JO - Studia Mathematica
PY - 2007
SP - 165
EP - 181
VL - 182
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm182-2-5/
DO - 10.4064/sm182-2-5
LA - en
ID - 10_4064_sm182_2_5
ER -
%0 Journal Article
%A Antonio S. Granero
%A Marcos Sánchez
%T Distances to convex sets
%J Studia Mathematica
%D 2007
%P 165-181
%V 182
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm182-2-5/
%R 10.4064/sm182-2-5
%G en
%F 10_4064_sm182_2_5
Antonio S. Granero; Marcos Sánchez. Distances to convex sets. Studia Mathematica, Tome 182 (2007) no. 2, pp. 165-181. doi: 10.4064/sm182-2-5